Примеры статей
Фурье Жан Батист Жозеф
Фурье (Fourier) Жан Батист Жозеф (21.3.1768, Осер, - 16.5.1830, Париж), французский математик, член Парижской АН (1817). Окончив военную школу в Осере, работал там же преподавателем. В 1796-98…
Остроградский Михаил Васильевич
Остроградский Михаил Васильевич [12(24).9.1801, деревня Пашенная, ныне Полтавской области, - 20.12.1861(1.1.1862), Полтава], русский математик, академик Петербургской АН (1830). Учился в Харьковском…
Собственные функции
Собственные функции, понятие математического анализа. При решении многих задач математической физики (в теории колебаний, теплопроводности и т.д.) возникает необходимость в нахождении не равных…
Собственные значения
Собственные значения линейного преобразования или оператора А, числа l,длякоторых существует ненулевой вектор х такой, что Ах = lх; вектор х называется собственным вектором. Так, С. з…
Фурье ряд
Фурье ряд, тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то её Ф. р. имеет вид ,где a0, an, bn (n 3 1) - Фурье…
Фурье интеграл
Фурье интеграл, формула для разложения непериодической функции на гармонические компоненты, частоты которых пробегают непрерывную совокупность значений. Если функция f (x) удовлетворяет на каждом…
Стеклов Владимир Андреевич
Стеклов Владимир Андреевич [28.12.1863 (9.1.1864), Нижний Новгород, ныне Горький, - 30.5.1926, Крым, похоронен в Ленинграде], советский математик, академик. (1912; член-корреспондент 1902). В 1919-26…
Фурье метод
Фурье метод, метод решения задач математической физики, основанный на разделении переменных. Предложен для решения задач теории теплопроводности Ж. Фурье и в полной общности сформулирован М. В. Остроградским в 1828. Решение уравнения, удовлетворяющее заданным начальным однородным и краевым условиям, ищется по Ф. м. как суперпозиция решений, удовлетворяющих краевым условиям и представимых в виде произведения функции от пространственных переменных на функцию от времени. Нахождение таких решений связано с разысканием собственных функций и собственных значений некоторых дифференциальных операторов и последующим разложением функций начальных условий по найденным собственным функциям. В частности, разложение функций в ряды и интегралы Фурье (см. Фурье ряд, Фурье интеграл) связано с применением Ф. м. для изучения задач о колебании струны и о теплопроводности стержня. Например, изучение малых колебаний струны длины l, имеющей закрепленные концы, сводиться к решению уравнения при краевых условиях u (0, t) = u (l, t) = 0 и начальных условиях u (x,0) = f (x); u't (x, 0) = F (x); 0 £ x £ l. Решения этого уравнения, имеющие вид X (x) T (t) и удовлетворяющие краевым условиям, выражаются формулой:
.
Выбирая соответствующим образом коэффициенты An и Bn, можно добиться того, что функция
будет решением поставленной задачи.
Ряд важных проблем, связанных с применением Ф. м., был решен В. А. Стекловым.