Примеры статей
Фурье ряд
Фурье ряд, тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то её Ф. р. имеет вид ,где a0, an, bn (n 3 1) - Фурье…
Фурье Жан Батист Жозеф
Фурье (Fourier) Жан Батист Жозеф (21.3.1768, Осер, - 16.5.1830, Париж), французский математик, член Парижской АН (1817). Окончив военную школу в Осере, работал там же преподавателем. В 1796-98…
Несобственные интегралы
Несобственные интегралы, обобщение классического понятия интеграла на случай неограниченных функций и функций, заданных на бесконечном промежутке интегрирования (см. Интеграл). Определённый интеграл…
Суммирование
Суммирование расходящихся рядов и интегралов, построение обобщённой суммы ряда (соответственно значения интеграла), не имеющего обычной суммы (соответственно значения). Расходящиеся ряды могут…
Фурье интеграл
Фурье интеграл, формула для разложения непериодической функции на гармонические компоненты, частоты которых пробегают непрерывную совокупность значений. Если функция f (x) удовлетворяет на каждом конечном отрезке условию Дирихле (см. Фурье ряд) и если сходится
,
то
. (1)
Эта формула впервые встречается при решении некоторых задач теплопроводности у Ж. Фурье (1811), но её доказательство было дано позже другими математиками. Формулу (1) можно представить также в виде
, (2)
где
;
.
В частности для чётных функций
,
где
.
Формулу (2) можно рассматривать как предельную форму ряда Фурье для функций, имеющих период 2T, когда Т ® ¥. При этом а (u) и b (u) аналогичны коэффициентам Фурье функции f (x). Употребляя комплексные числа, можно заменить формулу (1) формулой
.
Формулу (1) можно преобразовать также к виду
(3)
(простой интеграл Фурье).
Если интегралы в формулах (2), (3) расходятся (см. Несобственные интегралы), то во многих случаях их можно просуммировать к f (x) при помощи того или иного метода суммирования. При решении многих задач используются формулы Ф. и. для функций двух и большего числа переменных.
Лит.: Титчмарш Е., Введение в теорию интегралов Фурье, пер. с англ., М. — Л., 1948.