Примеры статей
Оптическое излучение
Оптическое излучение, светв широком смысле слова, электромагнитные волны, длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. К О. и., помимо воспринимаемого человеческим глазом…
Ньютон Исаак
Ньютон (Newton) Исаак (4.1.1643, Вулсторп, около Граптема, - 31.3.1727, Кенсингтон), английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного…
Двойное лучепреломление
Двойное лучепреломление, расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных…
Гюйгенс Христиан
Гюйгенс, Хёйгенс (Huygens) Христиан (14. 4. 1629, Гаага, - 8. 7. 1695, там же), нидерландский механик, физик и математик, создатель волновой теории света. Первый иностранный член Лондонского…
Малюс Этьенн Луи
Малюс (Malus) Этьенн Луи (23.6.1775, Париж, - 23.2.1812, там же), французский физик, член Парижской АН (1810). После окончания Политехнической школы в Париже (1796) вступил в инженерные войска; в чине…
Био Жан Батист
Био (Biot) Жан Батист (21.4.1774, Париж, - 3.2.1862. там же), французский физик, геодезист и астроном, член Парижской АН (1803). Образование получил в Политехнической школе в Париже. Профессор Коллеж…
Френель Огюстен Жан
Френель (Fresnel) Огюстен Жан (10.5.1788, Брольи, - 14.7.1827, Виль-д'Авре, близ Парижа), французский физик, один из основателей волновой оптики, член Парижской АН (с 1823). Родился в семье…
Араго Доминик Франсуа
Араго (Arago) Доминик Франсуа (26.2.1786 - 2.10.1853, Париж), французский астроном, физик и политический деятель, член Парижской АН (с 1809). Учился в Политехнической школе в Париже. С 1805 секретарь…
Брюстер Дейвид
Брюстер (Brewster) Дейвид (11.12. 1781, Джедборо, графство Роксбро, - 10.2.1868, Аллерби, Мелроз), английский физик, член Лондонского королевского общества (1815). Учился в Эдинбурге. В 1838-59…
Интерференция света
Интерференция света, сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и…
Юнг Томас
Юнг, Янг (Young) Томас (13.6.1773, Милвертон, графство Сомерсет, - 10.5. 1829, Лондон), английский физик, врач и астроном, один из создателей волновой теории света. Член Лондонского королевского…
Максвелл Джеймс Клерк
Максвелл (Maxwell) Джеймс Клерк (Clerk) (13.6.1831, Эдинбург, - 5.11.1879, Кембридж), английский физик, создатель классической электродинамики, один из основателей статистической физики. Член…
Оптика
Оптика (греч. optike - наука о зрительных восприятиях, от optos - видимый, зримый), раздел физики, в котором изучаются природа оптического излучения (света), его распространение и явления, наблюдаемые…
Электромагнитные волны
Электромагнитные волны, электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем в 1832. Дж. Максвелл в 1865 теоретически…
Напряжённость электрического поля
Напряжённость электрического поля, векторная физическая величина (Е), являющаяся основной количественной характеристикой электрического поля; определяется отношением силы, действующей со стороны поля…
Напряжённость магнитного поля
Напряжённость магнитного поля, векторная физическая величина (Н), являющаяся количественной характеристикой магнитного поля. Н. м. п. не зависит от магнитных свойств среды. В вакууме Н. м. п…
Источники света
Источники света, излучатели электромагнитной энергии в видимой (или оптической, т. е. не только видимой, но и ультрафиолетовой и инфракрасной) области спектра. Естественными И. с. являются Солнце…
Лазер
Лазер, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных букв (…
Фаза (период)
Фаза (от греч. phasis - появление), период, ступень в развитии какого-либо явления; см. также Фаза, Фаза колебаний…
Когерентность
Когерентность (от латинского cohaerens - находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются…
Монохроматический свет
Монохроматический свет (от моно... и греч. chroma, родительный падеж chromatos - цвет), электромагнитная волна одной определённой и строго постоянной частоты из диапазона частот, непосредственно…
Эксцентриситет
Эксцентриситет конического сечения, число, равное отношению расстояния от точки конического сечения до фокуса к расстоянию от этой точки до директрисы. Э. характеризует форму конического сечения. Так…
Плоскость поляризации
Плоскость поляризации, плоскость, проходящая через направление распространения линейно поляризованной электромагнитной волны (см. Поляризация волн, Поляризация света) и направление колебаний…
Полное внутреннее отражение
Полное внутреннее отражение, отражение оптического излучения (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из…
Фотон
Фотон (от греч. phos, родительный падеж photos - свет), элементарная частица, квант электромагнитного излучения (в узком смысле - света). Масса покоя m0 Ф. равна нулю (из опытных данных следует, что…
Излучение
Излучение электромагнитное, процесс образования свободного электромагнитного поля. (Термин "И." применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля - см…
Квантовая механика
Квантовая механика волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а…
Оптика
Оптика (греч. optike - наука о зрительных восприятиях, от optos - видимый, зримый), раздел физики, в котором изучаются природа оптического излучения (света), его распространение и явления, наблюдаемые…
Момент количества движения
Момент количества движения, кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения. Как и для…
Планка постоянная
Планка постоянная, квант действия, фундаментальная физическая постоянная, определяющая широкий круг физических явлений, для которых существенна дискретность действия. Эти явления изучаются в квантовой…
Суперпозиции принцип
Суперпозиции принцип, принцип наложения, 1) допущение, согласно которому если составляющие сложного процесса воздействия взаимно не влияют друг на друга, то результирующий эффект будет представлять…
Поляризационные приборы
Поляризационные приборы, предназначаются для обнаружения, анализа, получения и преобразования поляризованного оптического излучения (света), а также для различных исследований и измерений, основанных…
Оптическая ориентация
Оптическая ориентация парамагнитных атомов, упорядочение с помощью оптического излучения направлений магнитных моментов и связанных с ними механических моментов атомов газа (см. Атом). Открыта А…
Садовского эффект
Садовского эффект, появление механического вращающего момента, действующего на тело, облучаемое поляризованным эллиптически или по кругу светом. Теоретически предсказан в 1898 русским учёным А. И…
Отражение света
Отражение света, явление, заключающееся в том, что при падении света (оптического излучения) из одной среды на границу её раздела со 2-й средой взаимодействие света с веществом приводит к появлению…
Преломление света
Преломление света, изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред. На протяжённой плоской границе раздела однородных изотропных…
Брюстера закон
Брюстера закон, закон, выражающий связь показателя преломления диэлектрика с таким углом падения световых или радиоволн, при котором отражённое от поверхности диэлектрика излучение полностью…
Оптическая анизотропия
Оптическая анизотропия, различие оптических свойств среды в зависимости от направления распространения в ней оптического излучения (света) и состояния поляризации этого излучения (см. Поляризация…
Поглощение света
Поглощение света, уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в…
Плеохроизм
Плеохроизм (от греч. pleon - более многочисленный, больший и chroa - цвет), изменение окраски веществ в проходящем через них свете в зависимости от направления распространения этого света и его…
Преломления показатель
Преломления показатель относительный двух сред n21, безразмерное отношение скоростей распространения оптического излучения - света (реже - излучения радиодиапазона) в 1-й (u1) и во 2-й (u2) средах…
Двойное лучепреломление
Двойное лучепреломление, расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных…
Кристаллооптика
Кристаллооптика, пограничная область оптики и кристаллофизики, охватывающая изучение законов распространения света в кристаллах. Характерными для кристаллов явлениями, изучаемыми К., являются: двойное…
Лазер
Лазер, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных букв (…
Вынужденное излучение
Вынужденное излучение, индуцированное излучение, испускание электромагнитного излучения квантовыми системами под действием падающего на них излучения. Фотоны, испускаемые при В. и., совпадают по…
Резонансное излучение
Резонансное излучение, излучение, испускаемое системой связанных зарядов (например, атомом, атомным ядром), при котором частота излучения совпадает с частотой возбуждающего света. Р. и. могут…
Атмосферная оптика
Атмосферная оптика, раздел физики атмосферы, в котором изучаются оптические явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги…
Комбинационное рассеяние света
Комбинационное рассеяние света, рассеяние света веществом, сопровождающееся заметным изменением частоты рассеиваемого света. Если источник испускает линейчатый спектр, то при К. р. с. в спектре…
Поляризация небесного свода
Поляризация небесного свода, одно из оптических явлений атмосферы, наблюдаемое при безоблачной погоде днём, а также ночью при лунном свете. Заключается в том, что лучистый поток, поступающий на земную…
Люминесценция
Люминесценция (от латинского lumen - свет и -escent - суффикс, означающий слабое действие), излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени…
Спектральные линии
Спектральные линии, узкие участки в спектрах оптических, каждый из которых можно охарактеризовать определённой длиной волны l (или частотой , где с - скорость света). С. л. наблюдаются в спектрах…
Конденсированная система
Конденсированная система, термодинамическая система, не содержащая ни газов, ни паров и, следовательно, образованная только твёрдыми и (или) жидкими фазами. См. Конденсированное состояние вещества…
Зеемана эффект
Зеемана эффект, расщепление спектральных линий под действием магнитного поля. Открыто в 1896 П. Зееманом при исследовании свечения паров натрия в магнитном поле. Для наблюдения З. э. источник света…
Магнитооптика
Магнитооптика, магнетооптика, раздел физики, в котором изучаются изменения оптических свойств сред под действием магнитного поля и обусловливающие эти изменения особенности взаимодействия оптического…
Штарка эффект
Штарка эффект, расщепление спектральных линий в электрических полях. Открыт в 1913 Й. Штарком при изучении спектра атома водорода. Наблюдается в спектрах атомов и др. квантовых систем; является…
Белый свет
Белый свет, электромагнитное излучение сложного спектрального состава, вызывающее в нормальном человеческом глазе нейтральное в цветовом отношении ощущение. Ощущение Б. с. даёт излучение Солнца, а…
Разность хода
Разность хода лучей, разность оптических длин путей двух световых лучей, имеющих общие начальную и конечную точки. Понятие Р. х. играет основную роль в описании интерференции света и дифракции света…
Поляризационные приборы
Поляризационные приборы, предназначаются для обнаружения, анализа, получения и преобразования поляризованного оптического излучения (света), а также для различных исследований и измерений, основанных…
Микроскоп (оптич. прибор)
Микроскоп (от микро... и греч. skopeo - смотрю), оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз…
Квантовые переходы
Квантовые переходы, скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, твёрдого тела) из одного состояния в другое. Наиболее важными являются К. п. между стационарными…
Поляризационно-оптический метод исследования
Поляризационно-оптический метод исследования напряжении, метод изучения напряжений в деталях машин и строительных конструкциях на прозрачных моделях. Основан на свойстве большинства прозрачных…
Плазма
Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном…
Диагностика плазмы
Диагностика плазмы, общее название для различных методов измерения физических параметров плазмы (например, зондовые измерения, спектроскопические методы, радиочастотное зондирование и т.д.). Подробнее…
Оптическая ориентация
Оптическая ориентация парамагнитных атомов, упорядочение с помощью оптического излучения направлений магнитных моментов и связанных с ними механических моментов атомов газа (см. Атом). Открыта А…
Фотолюминесценция
Фотолюминесценция, люминесценция, возбуждаемая светом. Простейший случай Ф. - резонансное излучение атомных паров, когда испускается электромагнитное излучение такой же частоты, какую имеет…
Фазовый переход
Фазовый переход, фазовое превращение, в широком смысле - переход вещества из одной фазы в другую при изменении внешних условий - температуры, давления, магнитного и электрического полей и т.д.; в…
Малюса закон
Малюса закон, зависимость интенсивности линейно-поляризованного света после его прохождения через анализатор от угла a между плоскостями поляризации падающего света и анализатора (см. Поляризация…
Фотография
Фотография (от фото... и ...графия), совокупность методов получения стабильных во времени изображений предметов и оптических сигналов на светочувствительных слоях (СЧС) путём закрепления…
Светофильтр
Светофильтр, устройство, меняющее спектральный состав и энергию падающего на него оптического излучения (света). Основной характеристикой С. является спектральная зависимость его пропускания…
Модуляция света
Модуляция света, модуляция колебаний электромагнитного излучения оптического диапазона (видимого света, ультрафиолетового и инфракрасного излучений). При М. с. изменяются амплитуда (и следовательно…
Оптическая локация
Оптическая локация, совокупность методов обнаружения, измерения координат, а также распознавания формы удалённых объектов с помощью электромагнитных волн оптического диапазона - от ультрафиолетовых до…
Оптическая связь
Оптическая связь, связь посредством электромагнитных колебаний оптического диапазона (как правило, 1013-1015гц). Использование света для простейших (малоинформативных) систем связи имеет давнюю…
Поляриметрия
Поляриметрия, методы исследования, основанные на измерении: 1) степени поляризации света и 2) оптической активности, т. е. величины вращения плоскости поляризации света при прохождении его через…
Сахариметрия
Сахариметрия, метод определения концентрации растворов оптически-активных веществ (главным образом сахаров, откуда название метода). В С. условия измерения стандартизуют, а шкалу измерительного…
Поляризация света
Поляризация света, одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). П. с. называются также геометрические характеристики, которые отражают особенности этого неравноправия. Впервые понятие о П. с. было введено в оптику И. Ньютоном в 1704—06, хотя явления, обусловленные ею, изучались и ранее (открытие двойного лучепреломления в кристаллах Э. Бартолином в 1669 и его теоретическое рассмотрение Х. Гюйгенсом в 1678—90). Сам термин "П. с." предложен в 1808 Э. Малюсом. С его именем и с именами Ж. Био, О. Френеля, Д. Араго, Д. Брюстера и др. связано начало широкого исследования эффектов, в основе которых лежит П. с.
Существенное значение для понимания П. с. имело её проявление в эффекте интерференции света. Именно тот факт, что два световых луча, линейно поляризованных (см. ниже) под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т. Юнг, 1816—19). П. с. нашла естественное объяснение в электромагнитной теории света Дж. К. Максвелла (1865—73) (см. Оптика).
Поперечность световых волн (как и любых др. электромагнитных волн) выражается в том, что колеблющиеся в них векторы напряжённости электрического поля Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Е и Н выделяют (отсюда указанное выше неравноправие) определённые направления в пространстве, занятом волной. Кроме того, Е и Н почти всегда (об исключениях см. ниже) взаимно перпендикулярны, поэтому для полного описания состояния П. с. требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.
Световой импульс, испускаемый каким-либо отдельно взятым элементарным излучателем (атом, молекула) в единичном акте излучения, всегда поляризован полностью. Но макроскопические источники света состоят из огромного числа таких частиц-излучателей; пространственная ориентации векторов Е (и моменты актов излучения) световых импульсов отдельных частиц в большинстве случаев распределены хаотически (это не относится, например, к лазерам). Кроме того, поляризация меняется в результате процессов взаимодействия между частицами-излучателями. Поэтому в общем излучении подавляющего большинства источников направление Е не определено (оно непрерывно и беспорядочно меняется за чрезвычайно малые промежутки времени). Подобное излучение называется неполяризованным, или естественным, светом. Е, как и всякий вектор, всегда можно представить в виде суммы его проекций на 2 взаимно перпендикулярных направления (выбираемых в плоскости, поперечной направлению распространения света). В естественном свете разность фаз между такими проекциями непрерывно и хаотически меняется. В полностью поляризованном свете эта разность фаз строго постоянна, т. е. взаимно перпендикулярные компоненты Е когерентны (см. Когерентность). Создав определённые условия на пути распространения естественного света, можно выделить из него поляризованную (полностью или частично) составляющую. Кроме того, полная или частичная (о смысле этого понятия см. ниже) П. с. возникает в ряде природных процессов испускания света и его взаимодействия с веществом.
Полную поляризацию монохроматического света характеризуют проекцией траектории конца вектора Е (рис. 1) в каждой точке луча на плоскость, перпендикулярную лучу. В самом общем случае т. н. эллиптической поляризации такая проекция — эллипс, что легко понять, учитывая постоянство разности фаз между взаимно перпендикулярными компонентами Е и одинаковость частоты их колебаний в монохроматической волне. Для полного описания эллиптической П. с. необходимо знать направление вращения Е по эллипсу (правое или левое), ориентацию осей эллипса и его эксцентриситет (см., например, рис. 2, б, г, е). Наибольший интерес представляют предельные случаи эллиптической П. с. — линейная П. с. (разность фаз 0, kp, где k — целое число, рис. 2, а и д), когда эллипс вырождается в отрезок прямой, и круговая, или циркулярна я, П. с. [разность фаз ±(2k + 1)p/2], при которой эллипс поляризации превращается в окружность. Определяя состояние линейно- или плоскополяризованного света, достаточно указать положение плоскости поляризации света, поляризованного по кругу,— направление вращения (правое — рис. 2, в, или левое). В сложных неоднородных световых волнах (например, в металлах или при полном внутреннем отражении) мгновенные направления векторов Е и Н уже не связаны простым соотношением ортогональности, и для полного описания П. с. в таких волнах требуется знание поведения каждого из этих векторов по отдельности.
Если фазовое соотношение между компонентами (проекциями) Е меняется за времена, много меньшие времени измерения П. с., нельзя говорить о полной П. с. Однако может случиться, что в составляющих пучок света монохроматических волнах Е меняется не совершенно хаотически, а между взаимно перпендикулярными компонентами Е существует некоторый преимущественный фазовый сдвиг (фазовая корреляция), сохраняющийся в течение достаточно длительного времени. Физически это означает, что в поле световой волны амплитуда проекции Е на одно из взаимно перпендикулярных направлений всегда больше, чем на другое. Степень подобной фазовой корреляции в таком — частично поляризованном — свете описывают параметром р — степенью П. с. Так, если преимущественный фазовый сдвиг равен 0, свет частично линейно поляризован; ± p/2 — частично поляризован по кругу. Частично поляризованный свет можно рассматривать как "смесь" двух крайних видов — полностью поляризованного и естественного. Их соотношение и характеризуют параметром р, который часто (но не всегда) определяют как , где индексы 1 и 2 относятся к интенсивностям I света двух "ортогональных" поляризаций, например линейных во взаимно перпендикулярных плоскостях или соответствующих правой и левой круговым поляризациям; р может меняться от 0 до 100%, отражая все количественные градации состояния П. с. (Следует иметь в виду, что свет, проявляющийся в одних опытах как неполяризованный, в других может оказаться полностью поляризованным — с П. с., меняющейся во времени, по сечению пучка или по спектру.)
В квантовой оптике электромагнитное излучение рассматривают как поток фотонов (см. Излучение, Квантовая механика, Оптика). Состояния П. с. с квантовой точки зрения определяются тем, каким моментом количества движения обладают фотоны в потоке. Так, фотоны с круговой поляризацией (правой или левой) обладают моментом, равным ± ( — Планка постоянная). Любое состояние П. с. может быть выражено всего через два т. н. базисных состояния. При описании П. с. выбор пары исходных базисных состояний неоднозначен — ими могут служить, например, любые две взаимно-ортогональные линейные П. с., правая и левая круговые П. с. и т.д., причём в каждом случае от одной пары базисных состояний можно по определённым правилам перейти к др. паре.
Эта неоднозначность имеет в квантовом подходе принципиальный характер, однако "произвол" обычно ограничивают конкретные физические условия: наиболее удобно выбирать за базисную пару такие состояния П. с., которые преобладают в актах испускания фотонов элементарными излучателями либо определяют рассматриваемый процесс взаимодействия света и вещества. (Определение состояния П. с. на опыте осуществляется с помощью такого взаимодействия; по общим правилам квантовой механики подобный эксперимент всегда меняет — иногда пренебрежимо мало, иногда существенно — исходную П. с.) Базисные состояния и состояния, описываемые любой линейной комбинацией базисных (суперпозицией, см. Суперпозиции принцип), называются чистыми. Они соответствуют полной П. с., со степенью П. с. 100%. Фотоны могут находиться не только в чистых, но и в т. н. смешанных состояниях, в которых степень их поляризации меньше 100% и может доходить до нуля (естественный свет). Смешанные состояния также выражаются через базисные, но более сложным образом, чем линейная суперпозиция (их называют некогерентной смесью чистых состояний). Взаимодействие света и вещества может в определённых условиях приводить к полному или частичному "выделению" чистых состояний из смешанных (за счёт упомянутого выше изменения П. с. при таком взаимодействии).
Это явление используется для получения полностью поляризованного света или увеличения степени П. с. во многих поляризационных приборах. Если за базисные состояния П. с. выбраны две круговые (правая и левая) П. с., то при их наложении (когерентной суперпозиции) в равных долях наблюдается линейная П. с.; суперпозиции их в различных др. соотношениях дают эллиптические П. с. со всевозможными характеристиками. Через эти же базисные состояния могут быть выражены любые смешанные состояния. Т. о., тот или иной выбор всего двух базисных состояний даёт возможность описать все состояния П. с.
Эксперименты подтверждают теоретический вывод о том, что каждый фотон, поляризованный по кругу, обладает моментом количества движения = h/2p (см. Оптическая ориентация, Садовского эффект). Характер поляризации фотонов определяется законом сохранения момента количества движения системы элементарный излучатель — испущенный фотон (при условии, что взаимодействием отдельных излучателей между собой можно пренебречь).
Кроме особенностей элементарных актов излучения, к частичной (а иногда и полной) П. с. приводит множество физических процессов. К ним относятся, например, отражение света и преломление света, при которых П. с. обусловлена различием оптических характеристик границы раздела двух сред для компонент светового пучка, поляризованных параллельно и перпендикулярно плоскости падения (см. Брюстера закон). Свет может поляризоваться при прохождении через среды, обладающие естественной или вызванной внешними воздействиями (индуцированной) оптической анизотропией (вследствие неодинаковости коэффициентов поглощения света при различных состояниях П. с., например при правой и левой круговых П. с. — т. н. круговой дихроизм, являющийся частным случаем плеохроизма; вследствие различия преломления показателей среды для лучей различных линейных поляризаций — двойного лучепреломления, см. также Кристаллооптика). Очень часто полностью поляризовано излучение лазеров; одной из основных (но не единственной!) причин П. с. в лазерах является специфический характер вынужденного излучения, при котором поляризации испускаемого фотона и фотона, вызвавшего акт испускания, абсолютно тождественны; т. о. при лавинообразном умножении числа испускаемых фотонов в лазерном импульсе их поляризации могут быть совершенно одинаковыми. П. с. возникает при резонансном излучении в парах, жидкостях и твёрдых телах. П. с. при рассеянии света столь характерна, что её исследование — один из основных способов изучения как особенностей и условий самого рассеяния, так и свойств рассеивающих центров, в частности их структуры и взаимодействия между собой (см., например, Атмосферная оптика, Комбинационное рассеяние света, Поляризация небесного свода). (При рассеянии поляризованного света происходит и его деполяризация — уменьшение степени П. с.) В определённых условиях сильно поляризовано люминесцентное свечение (см. Люминесценция), особенно при возбуждении его поляризованным светом. П. с. весьма чувствительна к величине напряжённости и ориентации электрических и магнитных полей; в сильных полях компоненты, на которые расщепляются спектральные линии испускания, поглощения и люминесценции газообразных и конденсированных систем, оказываются поляризованными (см. Зеемана эффект. Магнитооптика, Штарка эффект).
Одним из эффектов интерференции поляризованных лучей света является хроматическая П. с.
Характерная для всех интерференционных явлений зависимость от длины волны ("цвета") излучения приводит при этой "П. с." (как показывает само название) к окрашиванию интерференционной картины, если исходный поток был белым светом. Обычная схема получения картины хроматической П. с. в параллельных лучах приведена на рис. 3. В зависимости от разности хода обыкновенного и необыкновенного лучей, приобретаемой в двулучепреломляющей пластинке, наблюдатель видит эту пластинку (в свете, выходящем из анализатора) тёмной или светлой в монохроматическом свете либо окрашенной — в белом. Если пластинка неоднородна по толщине или по показателю преломления, её участки, в которых эти параметры одинаковы, видны соответственно одинаково тёмными или светлыми либо одинаково окрашенными. Линии одинаковой цветности называют изохромами. Схема для наблюдения хроматической П. с. в сходящихся лучах показана на рис. 4, а получаемые при этом картины — на рис. 5.
На многих из перечисленных явлений основаны принципы действия разнообразных поляризационных приборов, с помощью которых не только анализируют состояние П. с., испускаемого внешними источниками, но и получают требуемую П. с. и преобразуют одни её виды в другие.
Особенности взаимодействия поляризованного света с веществом обусловили его исключительно широкое применение в научных исследованиях кристаллохимической и магнитной структуры твёрдых тел, строения биологических объектов (например, поляризационная микроскопия, см. Микроскоп), состояний элементарных излучателей и их отдельных центров, ответственных за квантовые переходы, для получения информации о чрезвычайно удалённых (в частности, астрофизических) объектах. Вообще, П. с. как существенно анизотропное свойство излучения позволяет изучать все виды анизотропии вещества — поведение газообразных, жидких и твёрдых тел в полях анизотропных возмущений (механических, звуковых, электрических, магнитных, световых), в кристаллооптике — структуру кристаллов (в подавляющем большинстве — оптически анизотропных), в технике (например, в машиностроении) — упругие напряжения в конструкциях (см. Поляризационно-оптический метод исследования напряжений) и т.д. Изучение П. с., испускаемого или рассеиваемого плазмой, играет важную роль в диагностике плазмы. Взаимодействие поляризованного света с веществом может приводить к оптической ориентации или т. н. выстраиванию атомов, генерации мощного поляризованного излучения в лазерах и пр. Напротив, исследование деполяризации света при фотолюминесценции даёт сведения о взаимодействии поглощающих и излучающих центров в частицах вещества, при рассеянии света — ценные данные о структуре и свойствах рассеивающих молекул или иных частиц, в др. случаях — о протекании фазовых переходов и т.д. П. с. широко используется в технике, например при необходимости плавной регулировки интенсивности светового пучка (см. Малюса закон), для усиления контраста и устранения световых бликов в фотографии, при создании светофильтров, модуляторов излучения (см. Модуляция света), служащих одними из основных элементов систем оптической локации и оптической связи, для изучения протекания химических реакций, строения молекул, определения концентраций растворов (см. Поляриметрия, Сахариметрия) и мн. др. П. с. играет заметную роль в живой природе. Многие живые существа способны чувствовать П. с., а некоторые насекомые (пчёлы, муравьи) ориентируются в пространстве по поляризованному (в результате рассеяния в атмосфере) свечению голубого неба. При определённых условиях к П. с. становится чувствительным и человеческий глаз (т. н. явление Хайдингера).
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Шерклифф У., Поляризованный свет, пер. с англ., М., 1965; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Феофилов П. П., Поляризованная люминесценция атомов, молекул и кристаллов, М., 1959; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969.
В. С. Запасский.