Примеры статей
Атом
Атом (от греч. atomos - неделимый), частица вещества микроскопических размеров и очень малой массы (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойств. Каждому…
Химическая связь
Химическая связь, взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома…
Периодическая система элементов
Периодическая система элементов Д. И. Менделеева, естественная классификация химических элементов, являющаяся табличным (или др. графическим) выражением периодического закона Менделеева. П. с. э…
Ядро атомное
Ядро атомное, центральная массивная часть атома, вокруг которой по квантовым орбитам обращаются электроны. Масса Я. а. примерно в 4-103 раз больше массы всех входящих в состав атома электронов…
Элементарные частицы
Элементарные частицы. Введение. Э. ч. в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии "Э. ч." в современной физике…
Теплоёмкость
Теплоёмкость, количество теплоты, поглощаемой телом при нагревании на 1 градус; точнее - отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому…
Ферромагнетизм
Ферромагнетизм, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация…
Сверхтекучесть
Сверхтекучесть, особое состояние квантовой жидкости, находясь в котором жидкость протекает через узкие щели и капилляры без трения; при этом протекающая часть жидкости обладает равной нулю энтропией…
Сверхпроводимость
Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для…
Белые карлики
Белые карлики в астрономии, очень плотные горячие звёзды малых размеров, состоящие из вырожденного газа. Массы обычных Б. к. составляют в среднем около 1, радиусы около 0,2, светимости около 0,01…
Нейтронные звёзды
Нейтронные звёзды, одна из возможных конечных стадий эволюции звёзд большой массы; вещество нейтронной звезды состоит из нейтронов с малой примесью электронов, протонов и более тяжёлых ядер. На…
Термоядерные реакции
Термоядерные реакции, ядерные реакции между лёгкими атомными ядрами, протекающие при очень высоких температурах (порядка 107 К и выше). Высокие температуры, то есть достаточно большие относительные…
Джозефсона эффект
Джозефсона эффект, протекание сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника (так называемый контакт Джозефсона); предсказан на основе теории сверхпроводимости…
Ядерный реактор
Ядерный реактор, устройство, в котором осуществляется управляемая ядерная цепная реакция, сопровождающаяся выделением энергии. Первый Я. р. построен в декабре 1942 в США под руководством Э. Ферми. В…
Квантовая электроника
Квантовая электроника, область физики, изучающая методы усиления и генерации электромагнитных колебаний, основанные на использовании эффекта вынужденного излучения, а также свойства квантовых…
Излучение
Излучение электромагнитное, процесс образования свободного электромагнитного поля. (Термин "И." применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля - см…
Ньютон Исаак
Ньютон (Newton) Исаак (4.1.1643, Вулсторп, около Граптема, - 31.3.1727, Кенсингтон), английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного…
Эйнштейн Альберт
Эйнштейн (Einstein) Альберт (14.3.1879, Ульм, Германия, - 18.4.1955, Принстон, США), физик, создатель относительности теории и один из создателей квантовой теории и статистической физики. С 14 лет…
Относительности теория
Относительности теория, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности, устанавливаемые О. т., являются общими для всех физических процессов…
Квантовая теория поля
Квантовая теория поля. Квантовая теория поля - квантовая теория систем с бесконечным числом степеней свободы (полей физических).К. т. п., возникшая как обобщение квантовой механики в связи с проблемой…
Действие (физическая величина)
Действие, физическая величина, имеющая размерность произведения энергии на время и являющаяся одной из существенных характеристик движения системы. Для механической системы Д. обладает следующим…
Электродинамика
Электродинамика классическая, классическая (неквантовая) теория поведения электромагнитного поля, осуществляющего взаимодействие между электрическими зарядами. Основные законы классической Э…
Планк Макс Карл Эрнст Людвиг
Планк (Planck) Макс Карл Эрнст Людвиг (23.4.1858, Киль,- 4.10.1947, Гёттинген), немецкий физик-теоретик. Родился в семье юриста. Учился в Мюнхенском (1874-77) и Берлинском (1877-78) университетах;…
Планка закон излучения
Планка закон излучения, формула Планка, закон распределения энергии в спектре равновесного излучения (электромагнитного излучения, находящегося в термодинамическом равновесии с веществом) при…
Статистическая физика
Статистическая физика, раздел физики, задача которого - выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.)…
Фотоэффект
Фотоэффект, испускание электронов веществом под действием электромагнитного излучения (фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888…
Фотон
Фотон (от греч. phos, родительный падеж photos - свет), элементарная частица, квант электромагнитного излучения (в узком смысле - света). Масса покоя m0 Ф. равна нулю (из опытных данных следует, что…
Комптон Артур Холли
Комптон (Compton) Артур Холли (10.9.1892, Вустер, Огайо,-15.3.1962, Беркли), американский физик, член Национальной АН США. Окончил Принстонский университет (1914). В 1920-23 профессор университета…
Комптона эффект
Комптона эффект, комптон-эффект, упругое рассеяние электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн -…
Дифракция света
Дифракция света, явления, наблюдающиеся при распространении света мимо резких краёв непрозрачных или прозрачных тел, сквозь узкие отверстия. При этом происходит нарушение прямолинейности…
Де Бройль Луи
Де Бройль (de Broglie) Луи (р. 1892), французский физик; см. Бройль Л. де…
Бор Нильс Хенрик Давид
Бор (Bohr) Нильс Хенрик Давид (7.10.1885, Копенгаген, - 18.11.1962, там же), датский физик. Создал первую квантовую теорию атома, а затем участвовал в разработке основ квантовой механики. Внёс также…
Дэвиссон Клинтон Джозеф
Дэвиссон, Дейвиссон (Davisson) Клинтон Джозеф (22.10.1881, Блумингтон, - 1.2.1958, Шарлотсвилл), американский физик. Окончил университет в Чикаго и Принстонский университет (1911). В 1917-46 сотрудник…
Дифракция частиц
Дифракция частиц, рассеяние микрочастиц (электронов, нейтронов, атомов и т.п.) кристаллами или молекулами жидкостей и газов, при котором из начального пучка частиц данного типа возникают дополнительно…
Шрёдингер Эрвин
Шрёдингер (Schrodinger) Эрвин (12.8.1887, Вена, - 4.1.1961, там же; похоронен в Альпбахе, Тироль), австрийский физик, один из создателей квантовой механики. Окончил Венский университет (1910). С 1911…
Дирак Поль Адриен Морис
Дирак (Dirac) Поль Адриен Морис (р. 8.8.1902, Бристоль), английский физик-теоретик, один из основателей квантовой механики, член Лондонского королевского общества (1930). Учился в Бристольском, затем…
Дирака уравнение
Дирака уравнение, квантовое уравнение движения электрона, удовлетворяющее требованиям относительности теории; установлено П. Дираком в 1928. Из Д. у. следует, что электрон обладает собственным…
Осциллятор
Осциллятор (от лат. oscillo - качаюсь), физическая система, совершающая колебания. Термином "О." пользуются для любой системы, если описывающие её величины периодически меняются со временем…
Дебай Петер Йозеф Вильгельм
Дебай (Debve) Петер Йозеф Вильгельм (24.3.1884, Маастрихт, - 2. 11. 1966, Итака, США), физик. По национальности голландец. Окончил Высшую техническую школу в Ахене (1905) и Мюнхенский университет (…
Борн Макс
Борн (Born) Макс (р. 11.12.1882, Бреслау, ныне Вроцлав, - 5.1.1970, Гёттинген), немецкий физик, один из основателей квантовой механики. Учился в 1900-07 в университетах Бреслау, Гейдельберга, Цюриха…
Карман Теодор фон
Карман (Karman) Теодор фон (11.5.1881, Будапешт, - 7.5.1963, Ахен), учёный в области механики. Учился в Будапештском техническом университете (1898-1902), затем в Гёттингенском университете. Профессор…
Резерфорд Эрнест
Резерфорд (Rutherford) Эрнест (30.8.1871, Брайтуотер, Новая Зеландия, - 19.10.1937, Кембридж), английский физик, заложивший основы учения о радиоактивности и строении атома; он первый осуществил…
Спектральные серии
Спектральные серии, группы спектральных линий в спектрах атомов, подчиняющиеся определённым закономерностям. Линии данной С. с. в спектрах испускания возникают при всех разрешенных квантовых переходах…
Франка - Герца опыт
Франка - Герца опыт, опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем. На рис. 1 приведена схема опыта. К катоду К и…
Матрица (в математике)
Матрица в математике, система элементов aij (чисел, функций или иных величин, над которыми можно производить алгебраические операции), расположенных в виде прямоугольной схемы. Если схема имеет m…
Неопределённостей соотношение
Неопределённостей соотношение, принцип неопределённости, фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты…
Уленбек Джордж Юджин
Уленбек (Uhlenbeck) Джордж Юджин (6.12.1900, Батавия, ныне Джакарта, остров Ява, - 1974), американский физик, по национальности голландец. Окончил Лейденский университет (1927). В 1927 переехал в США…
Гаудсмит Сэмюэл Абрахам
Гаудсмит (Goudsmit) Сэмюэл Абрахам (р. 11.7.1902, Гаага), американский физик. Учился в Лейденском и Амстердамском университетах. С 1927 преподавал в Мичиганском университете (в 1932-46 профессор). В…
Паули Вольфганг
Паули (Pauli) Вольфганг (25.4.1900, Вена, - 15.12.1958, Цюрих), швейцарский физик-теоретик, автор классических работ по квантовой механике. Окончил университет в Мюнхене (1921). В 1921-22 был…
Квантовые числа
Квантовые числа, целые (0, 1, 2,...) или полуцелые (1/2, 3/2, 5/2,...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые системы (атомное ядро, атом…
Спин
Спин (от англ. spin - вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении…
Паули принцип
Паули принцип, принцип запрета, фундаментальный закон природы, согласно которому две тождественные частицы с полуцелым спином (в единицах ) не могут одновременно находиться в одном состоянии…
Молекула
Молекула (новолат. molecula, уменьшительное от лат. moles - масса), наименьшая частица вещества, обладающая его химическими свойствами. М. состоит из атомов, точнее - из атомных ядер, окружающих их…
Менделеев Дмитрий Иванович
Менделеев Дмитрий Иванович [27.1(8.2).1834, Тобольск, - 20.1(2.2).1907, Петербург], русский химик, открывший периодический закон химических элементов, разносторонний учёный, педагог и общественный…
Плазма
Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном…
Вероятностей теория
Вероятностей теория, математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми. Утверждение о том…
Интерференция света
Интерференция света, сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и…
Рассеяние микрочастиц
Рассеяние микрочастиц, теория рассеяния, процесс столкновения частиц, в результате которого меняются импульсы частиц (упругое рассеяние) или наряду с изменением импульсов меняются также их внутреннего…
Волновая функция
Волновая функция в квантовой механике, величина, полностью описывающая состояние микрообъекта (например, электрона, протона, атома, молекулы) и вообще любой квантовой системы (например, кристалла)…
Квантовая механика
Квантовая механика волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.
Законы К. м. составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.
Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах К. м. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Т. о., К. м. становится в значительной мере "инженерной" наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.
Место квантовой механики среди других наук о движении. В начале 20 в. выяснилось, что классическая механика И. Ньютона имеет ограниченную область применимости и нуждается в обобщении. Во-первых, она не применима при больших скоростях движения тел — скоростях, сравнимых со скоростью света. Здесь её заменила релятивистская механика, построенная на основе специальной теории относительности А. Эйнштейна (см. Относительности теория). Релятивистская механика включает в себя Ньютонову (нерелятивистскую) механику как частный случай. Ниже термин "классическая механика" будет объединять Ньютонову и релятивистскую механику.
Для классической механики в целом характерно описание частиц путём задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако опыт показал, что это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). В этом состоит второе ограничение применимости механики Ньютона. Более общее описание движения дает К. М., которая включает в себя как частный случай классическую механику. К. м., как и классическая, делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности. В статье изложены основы нерелятивистской К. м. (Однако некоторые общие положения относятся к К. м. в целом. Нерелятивистская К. м. (как и механика Ньютона для своей области применимости) — вполне законченная и логически непротиворечивая теория, способная в области своей компетентности количественно решать в принципе любую физическую задачу. Релятивистская К. м. не является в такой степени завершенной и свободной от противоречий теорией. Если в нерелятивистской области можно считать, что движение определяется силами, действующими (мгновенно) на расстоянии, то в релятивистской области это несправедливо. Поскольку, согласно теории относительности, взаимодействие передается (распространяется) с конечной скоростью, должен существовать физический агент, переносящий взаимодействие; таким агентом является поле. Трудности релятивистской теории — это трудности теории поля, с которыми встречается как релятивистская классическая механика, так и релятивистская К. м. В этой статье не будут рассматриваться вопросы релятивистской К. м., связанные с квантовой теорией поля.
Критерий применимости классической механики.
Соотношение между Ньютоновой и релятивистской механикой определяется существованием фундаментальной величины — предельной скорости распространения сигналов, равной скорости света с (с " 3×1010 см/сек). Если скорости тел (значительно меньше скорости света (т. е. u/c << 1, так что можно считать с бесконечно большой), то применима Ньютонова механика.
Соотношение между классической механикой и К. м. носит менее наглядный характер. Оно определяется существование другой универсальной мировой постоянной — постоянной Планка h. Постоянная h (называемая также квантом действия) имеет размерность действия (энергии, умноженной на время) и равно h = 6,662×10–27 эрг×сек. (В теории чаще используется величина h = h/2p = 1,0545919×10–27 эрг×сек, которую также называют постоянной Планка.) Формально критерий применимости классической механики заключается в следующем: если в условиях данной задачи физические величины размерности действия значительно больше h (так что h можно считать очень малой), применима классическая механика. Более подробно этот критерий будет разъяснен при изложении физических основ К. м.
История создания квантовой механики. В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классической теории электромагнитного поля (классической электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (дуализм света); вторая — с невозможностью объяснить на основе классических представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счете, к открытию законов К. м.
Впервые квантовые представления (в т. ч. квантовая постоянная h) были введены в физику в работе М. Планка (1900), посвященной теории теплового излучения (см. Планка закон излучения). Существовавшая к тому времени теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическое) равновесие между излучением и веществом не может быть достигнуто, т.к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классической теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определенными порциями энергии — квантами. Величина такого кванта энергии зависит от частоты света n и равна E = hn
От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в дух ее формах к 1927. Первая начинается с работы Эйнштейна (1905), в которой была дана теория фотоэффекта — явления вырывания светом электронов из вещества. В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями — квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету — что сам свет состоит из отдельных порций — световых квантов (которые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний n волны соотношением Планка E = hn
Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц — фотона и электрона (см. Комптона эффект). Кинематика такого столкновения определяется законами сохранения энергии и импульса, причем фотону наряду с энергией E = hn следует приписать импульс р = h/l = hn/c, где l — длина световой волны. Энергия и импульс фотона связаны соотношением E = cp, справедливым в релятивистской механике для частицы с нулевой массой.
Т. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц — фотонов. В этом проявляется дуализм света, его сложная корпускулярно-волновая природа. Дуализм содержится уже в формуле E = hn, не позволяющей выбрать какую-либо одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой — частота n является характеристикой волны. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других — корпускулярную. По существу разрешение этого противоречия и привело к созданию физических основ К. м.
В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 Н. Бором условиям квантования атомных орбит (см. ниже), выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от ее природы, следует поставить в соответствие волну, длина которой l связана с импульсом частицы р соотношением
.
По этой гипотезе не только фотоны, но и все "обыкновенные частицы" (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в явлении дифракции. В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у других частиц, и справедливость формулы де Бройля была подтверждена экспериментально (см. Дифракция частиц). В 1926 Э. Шрёдингер предложил уравнение, описывающее поведение таких "волн" во внешних силовых полях. Так возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерялитивистской К. м. В 1928 П. Дирак сформулировал релятивистское уравнение, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных уравнений релятивистской К. м.
Вторая линия развития начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (колебательных систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучения веществом происходят квантами энергии hn. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантована, т. е. разность соседних уровней энергии (энергий, которыми может обладать осциллятор) должна равняться hn, где n — частота колебаний атомов. Теория Эйнштейна, уточнённая П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.
В 1913 Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе классических представлений приводило к парадоксальному результату — невозможности стабильного существования атомов: согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию; радиус его орбиты должен уменьшаться, и за время порядка 10–8 сек электрон должен упасть на ядро. Это означало, что законы классической физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.
Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определённым условиям квантования. Т. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии. Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классической орбиты была целым кратным постоянной Планка . Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии Ei, на другой с меньшей энергией Ek, при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход:
hn = Ei - Ek. (2)
Так возникает линейчатый спектр — основная особенность атомных спектров, Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул (см. Спектральные серии).
Существование уровней энергии в атомах было непосредственно подтверждено Франка — Герца опытами (1913—14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетических уровней атома.
Т. о., Н. Бор, используя квантовую постоянную h, отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля.
Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой — привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение молекулярной связи и т.д. "Полуклассическая" теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одногоуровня энергии на другой. Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно. Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома. В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины — матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).
Большую роль в создании К. м. сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование К. м. как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано неопределённостей соотношение — важнейшее соотношение, освещающее физический смысл уравнений К. м., её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты К. м. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.
Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули)о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) — спин. Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета (Паули принцип, см. ниже), имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.
В течение короткого времени К. м. была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской К. м. Нерелятивистская К. м. развивалась в основном в направлении охвата разнообразных конкретных задач физики атомов, молекул, твёрдых тел (металлов, полупроводников), плазмы и т.д., а также совершенствования математического аппарата и разработки количественных методов решения различных задач.
Вероятности и волны. Поскольку законы К. м. не обладают той степенью наглядности, которая свойственна законам классической механики, целесообразно проследить линию развития идей, составляющих фундамент К. м., и только после этого сформулировать её основные положения. Выбор фактов, на основе которых строится теория, конечно, не единствен поскольку К. м. описывает широчайший круг явлений и каждое из них способно дать материал для её обоснования. Будем исходить из требований простоты и возможной близости к истории.
Рассмотрим простейший опыт по распространению света (рис. 1). На пути пучка света ставится прозрачная пластинка S. Часть света проходит через пластинку, а часть отражается. Известно, что свет состоит из "частиц" — фотонов. Что же происходит с отдельным фотоном при попадании на пластинку? Если поставить опыт (например, с пучком света крайне малой интенсивности), в котором можно следить за судьбой каждого фотона, то можно убедиться, что фотон при встрече с пластинкой не расщепляется на два фотона, его индивидуальность как частицы сохраняется (иначе свет менял бы свою частоту, т. е. "цветность"). Оказывается, что некоторые фотоны проходят сквозь пластинку, а некоторые отражаются от нее. В чем причина этого? Может быть, имеется два разных сорта фотонов? Поставим контрольный опыт: внесем такую же пластинку на пути прошедшего света, который должен бы содержать только один из двух "сортов" фотонов. Однако будет наблюдаться та же картина: часть фотонов пройдет вторую пластинку, а часть отразится. Следовательно, одинаковые частицы в одинаковых условиях могут вести себя по-разному. А это означает, что поведение фотона при встрече с пластинкой непредсказуемо однозначно. Детерминизма в том смысле, как это понимается в классической механике, при движении фотонов не существует. Этот вывод является одним из отправных пунктов для устранения противоречия между корпускулярными и волновыми свойствами частиц и построения теории квантовомеханических явлений.
Задача отражения света от прозрачной пластинки не представляет какой-либо трудности для волновой теории: исходя из свойств пластинки, волновая оптика однозначно предсказывает отношение интенсивностей прошедшего и отражённого света. С корпускулярной точки зрения, интенсивность света пропорциональна числу фотонов. Обозначим через N общее число фотонов, через N1 и N2 — число прошедших и число отражённых фотонов (N1 + N2= N).Волновая оптика определяет отношение N1/N2, и о поведении одного фотона, естественно, ничего сказать нельзя. Отражение фотона от пластинки или прохождение через неё являются случайными событиями: некоторые фотоны проходят через пластинку, некоторые отражаются от неё, но при большом числе фотонов оказывается, что отношение N1/N2 находится в согласии с предсказанием волновой оптики. Количественно закономерности, проявляющиеся при случайных событиях, описываются с помощью понятия вероятности (см. Вероятностей теория). Фотон может с вероятностью w1пройти пластинку и с вероятностью w2 отразиться от неё. При общем числе фотонов N в среднем пройдёт пластинку w1N частиц, а отразится w2N частиц. Если N очень велико, то средние (ожидаемые) значения чисел частиц точно совпадают с истинными (хотя флуктуации существуют, и классическая оптика их учесть не может). Все соотношения оптики могут быть переведены с языка интенсивностей на язык вероятностей и тогда они будут относиться к поведению одного фотона. Вероятность того, что с фотоном произойдёт одно из двух альтернативных (взаимно исключающих) событий — прохождение или отражение, равна w1+w2= 1. Это закон сложения вероятностей, соответствующий сложению интенсивностей. Вероятность прохождения через две одинаковые пластинки равна w21,а вероятность прохождения через первую и отражения от второй —w1×w2(это отвечает тому, что на второй пластинке свет, прошедший первую пластинку, разделяется на прошедший и отражённый в том же отношении, как и на первой). Это закон умножения вероятностей (справедливый для независимых событий).
Рассмотренный опыт не специфичен для света. Аналогичные опыты с пучком электронов или др. микрочастиц также показывают непредсказуемость поведения отдельной частицы. Однако не только прямые опыты говорят в пользу того, что и в самом общем случае следует перейти к вероятностному описанию поведения микрочастиц. Теоретически невозможно представить, что одни микрочастицы описываются вероятностно, а другие классически: взаимодействие "классических" частиц с "квантовыми" с необходимостью приводило бы к внесению квантовых неопределённостей и делало бы поведение "классических" частиц также непредсказуемым (в смысле классического детерминизма).
Предсказание вероятностей различных процессов — такова возможная формулировка задачи К. м., в отличие от задачи классической механики, состоящей в предсказании в принципе только достоверных событий. Конечно, вероятностное описание допустимо и в классической механике. Для получения достоверного предсказания классическая механика нуждается в абсолютно точном задании начальных условий, т. е. положений и скоростей всех образующих систему частиц. Если же начальные условия заданы не точно, а с некоторой степенью неопределённости, то и предсказания будут содержать неопределённости, т. е. носить в той или иной степени вероятностный характер. Примером служит классическая статистическая физика, оперирующая с некоторыми усреднёнными величинами. Поэтому дистанция между строем мысли квантовой и классическая механики была бы не столь велика, если бы основными понятиями К. м. были именно вероятности. Чтобы выяснить радикальное различие между К. м. и классической механикой, несколько усложним рассмотренный выше опыт по отражению света.
Пусть отражённый пучок света (или микрочастиц) при помощи зеркала 3 поворачивается и попадает в ту же область А (например, в тот же детектор, регистрирующий фотоны), что и прошедший пучок (рис. 2). Естественно было бы ожидать, что в этом случае измеренная интенсивность равна сумме интенсивностей прошедшего и отражённого пучков. Но хорошо известно, что это не так: интенсивность в зависимости от расположения зеркала и детектора может меняться в довольно широких пределах и в некоторых случаях (при равной интенсивности прошедшего и отражённого света) даже обращаться в ноль (пучки как бы гасят друг друга). Это — явление интерференции света. Что же можно сказать о поведении отдельного фотона в интерференционном опыте? Вероятность его попадания в данный детектор существенно перераспределится по сравнению с первым опытом, и не будет равна сумме вероятностей прихода фотона в детектор первым и вторым путями. Следовательно, эти два пути не являются альтернативными (иначе вероятности складывались бы). Отсюда следует, что наличие двух путей прихода фотона от источника к детектору существенным образом влияет на распределение вероятностей, и поэтому нельзя сказать, каким путём прошёл фотон от источника к детектору. Приходится считать, что он одновременно мог придти двумя различными путями.
Необходимо подчеркнуть радикальность возникающих представлений. Действительно, невозможно представить себе движение частицы одновременно по двум путям. К. м. и не ставит такой задачи. Она лишь предсказывает результаты опытов с пучками частиц. Подчеркнём, что в данном случае не высказывается никаких гипотез, а даётся лишь интерпретация волнового опыта с точки зрения корпускулярных представлений. (Напомним, что речь идёт не только о свете, но и о любых пучках частиц, например электронов.) Полученный результат означает невозможность классического описания движения частиц по траекториям, отсутствие наглядности квантового описания.
Попытаемся всё же выяснить, каким путём прошла частица, поставив на возможных её путях детекторы. Естественно, что частица будет зарегистрирована в одном, а не сразу во всех возможных местах. Но как только измерение выделит определённую траекторию частицы, интерференционная картина исчезнет. Распределение вероятностей станет другим. Для возникновения интерференции нужны обе (все) возможные траектории. Т. о., регистрация траектории частицы так изменяет условия, что два пути становятся альтернативными, и в результате получается сложение интенсивностей, которое было бы в случае "классических" частиц, движущихся по определённым траекториям.
Для квантовых явлений очень важно точное описание условий опыта, в которых наблюдается данное явление. В условия, в частности, входят и измерительные приборы. В классической физике предполагается, что роль измерительного прибора может быть в принципе сведена только к регистрации движения и состояние системы при измерении не меняется. В квантовой физике такое предположение несправедливо: измерительный прибор наряду с др. факторами сам участвует в формировании изучаемого на опыте явления, и эту его роль нельзя не учитывать. Роль измерительного прибора в квантовых явлениях была всесторонне проанализирована Н. Бором и В. Гейзенбергом. Она тесно связана с соотношением неопределённостей, которое будет рассмотрено позже.
Внимание к роли измерений не означает, что в К. м. не изучаются физические явления безотносительно к приборам, например свойства частиц "самих по себе". Так, решаемые К. м. задачи об энергетических уровнях атомов, о рассеянии микрочастиц при их столкновениях друг с другом, об интерференционных явлениях — это задачи о свойствах частиц и их поведении. Роль прибора выступает на первое место тогда, когда ставятся специфические вопросы, некоторые из которых лишены, как выяснилось, смысла (например, вопрос о том, по какой траектории двигался электрон в интерференционном опыте, т.к. либо нет траектории, либо нет интерференции).
Вернёмся к интерференционному опыту. До сих пор было сделано лишь негативное утверждение: частица не движется по определённому пути, и вероятности не складываются. Конструктивное предложение для описания подобной ситуации можно почерпнуть снова из волновой оптики. В оптике каждая волна характеризуется не только интенсивностью, но и фазой (интенсивность пропорциональна квадрату амплитуды). Совокупность этих двух действительных величин — амплитуды А и фазы j — принято объединять в одно комплексное число, которое называют комплексной амплитудой: y = Aeij. Тогда интенсивность равна I = |y|2 = y*y = A2, где y* — функция, комплексно сопряжённая с y. Т. к. непосредственно измеряется именно интенсивность, то для одной волны фаза никак не проявляется. В опыте с прохождением и отражением света ситуация именно такая: имеется две волны y1 и y2, но одна из них существует только справа, а другая только слева (см. рис. 1); интенсивности этих волн I1= A12, I2= A22, и фазы не фигурируют (поэтому можно было обойтись только интенсивностями). В интерференционном опыте ситуация изменилась: волна y2 с помощью зеркала была направлена в область нахождения волны y1 (см. рис. 2). Волновое поле в области существования двух волн определяется в оптике с помощью принципа суперпозиции: волны налагаются друг на друга, т. е. складываются с учётом их фаз. Суммарная волна y имеет комплексную амплитуду, равную сумме комплексных амплитуд обеих волн:
.
Интенсивность суммарной волны зависит от разности фаз j1 — j2 (пропорциональной разности хода световых пучков по двум путям):
. (4)
В частности, при A1 = A2 и cos (j1 — j2) = — 1 |y|2 = 0.
В этом примере рассмотрен простейший случай сложения амплитуд. В более общем случае из-за изменения условий (например, из-за свойств зеркала) амплитуды могут изменяться по величине и фазе, так что суммарная волна будет иметь вид
где c1 и c2 — комплексные числа:
, .
Принципиальная суть явления при этом не изменяется. Характер явления не зависит также от общей интенсивности. Если увеличить y в С раз, то интенсивность увеличится в |С|2 раз, т. е. |С|2 будет общим множителем в формуле распределения интенсивностей. Число С можно считать как комплексным, так и действительным, физические результаты не содержат фазы числа С — она произвольна.
Для интерпретации волновых явлений с корпускулярной точки зрения необходимо перенесение принципа суперпозиции в К. м. Поскольку К. м. имеет дело не с интенсивностями, а с вероятностями, следует ввести амплитуду вероятности y = Aeij, полагая (по аналогии с оптическими волнами), что вероятность w = |cy|2 = |c|y*y. Здесь с — число, называемое нормировочным множителем, который должен быть подобран так, чтобы суммарная вероятность обнаружения частицы во всех возможных местах равнялась 1, т. е. . Множитель с определён только по модулю, фаза его произвольна. Нормировочный множитель важен только для определения абсолютной вероятности; относительные вероятности определяются амплитудами вероятности в произвольной нормировке. Амплитуда вероятности называются в К. м. также волновой функцией.
Амплитуды вероятности (как оптические амплитуды) удовлетворяют принципу суперпозиции: если y1 и y2 — амплитуды вероятности прохождения частицы соответственно первым и вторым путём, то амплитуда вероятности для случая, когда осуществляются оба пути, должна быть равна y = y1+y2. Тем самым фраза: "частица прошла двумя путями" приобретает волновой смысл, а вероятность w= |y1+y2|2 обнаруживает интерференционные свойства.
Следует подчеркнуть различие в смысле, вкладываемом в принцип суперпозиции в оптике (и др. волновых процессах) и К. м. Сложение (суперпозиция) обычных волн не противоречит наглядным представлениям, т.к. каждая из волн представляет возможный тип колебаний и суперпозиция соответствует сложению этих колебаний в каждой точке. В то же время квантовомеханические амплитуды вероятности описывают альтернативные (с классической точки зрения, исключающие друг друга) движения (например, волны y1 и y2 соответствуют частицам, приходящим в детектор двумя различными путями). С классической точки зрения, сложение таких движений представляется совершенно непонятным. В этом проявляется отсутствие наглядности квантовомеханического принципа суперпозиции. Избежать формального логического противоречия квантовомеханического принципа суперпозиции (возможность для частицы пройти одновременно двумя путями) позволяет вероятностная интерпретация. Постановка опыта по определению пути частицы (см. выше) приведёт к тому, что с вероятностью |y1|2 частица пройдёт первым и с вероятностью |y2|2 — вторым путём. Суммарное распределение частиц на экране будет определяться вероятностью |y1|2 + |y2|2, т. е. интерференция исчезнет.
Т. о., рассмотрение интерференционного опыта приводит к следующему выводу. Величиной, описывающей состояние физической системы в К. м., является амплитуда вероятности, или волновая функция, системы. Основная черта такого квантовомеханическ