Примеры статей
Ускорители заряженных частиц
Ускорители заряженных частиц - устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного…
Галактики
Галактики, гигантские звёздные системы, подобные нашей звёздной системе - Галактике, в состав которой входит Солнечная система. (Термин "галактики", в отличие от термина "Галактика", пишут со строчной…
Метагалактика
Метагалактика (от мета... и Галактика), совокупность звёздных систем (галактик), частью которой является всё множество (около 1 млрд.) галактик, доступных современным телескопам. Наша Галактика, или…
Тяготение
Тяготение, гравитация, гравитационное взаимодействие, универсальное взаимодействие между любыми видами материи. Если это взаимодействие относительно слабое и тела движутся медленно (по сравнению со…
Магнитосфера Земли
Магнитосфера Земли, область околоземного пространства, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения. См…
Солнечный ветер
Солнечный ветер, представляет собой постоянное радиальное истечение плазмы солнечной короны в межпланетное пространство. Образование С. в. связано с потоком энергии, поступающим в корону из более…
Гесс Виктор Франц
Гесс, Хесс (Hess) Виктор Франц (24.6.1883, Вальдштейн, - 17.12.1964, Маунт-Вернон, Нью-Йорк), австрийский физик. Учился в университетах Граца и Вены. С 1920 профессор университета в Граце, затем в…
Вильсона камера
Вильсона камера, прибор для наблюдения следов заряженных частиц, созданный Ч. Вильсоном в 1912. Действие В. к. основано на явлении конденсации пересыщенного пара, т. e. на образовании мелких капелек…
Скобельцын Дмитрий Владимирович
Скобельцын Дмитрий Владимирович [р. 12(24).11.1892, Петербург], советский физик, академик АН СССР (1946, член-корреспондент 1939), Герой Социалистического Труда (1969). После окончания Петроградского…
Стратосфера
Стратосфера (от лат. stratum - слой и греч. sphaira - шар), слой атмосферы между тропосферой и мезосферой (от 8-16 км до 45-55 км), температура в С. в общем растет с высотой. Газовый состав воздуха в…
Вернов Сергей Николаевич
Вернов Сергей Николаевич [р. 28.6(11.7).1910, Сестрорецк], советский физик, академик АН СССР (1968; член-корреспондент 1953). По окончании (в 1931) Ленинградского политехнического института работал в…
Милликен Роберт Эндрус
Милликен (Millikan) Роберт Эндрус (22.3.1868, Моррисон, - 19.12.1953, Сан-Марино), американский физик. Окончил Оберлинский колледж (Огайо) в 1891. В Колумбийском университете получил докторскую…
Ядерная фотографическая эмульсия
Ядерная фотографическая эмульсия, фотографическая эмульсия, предназначенная для регистрации следов заряженных ядерных частиц. Используется в ядерной физике, физике элементарных частиц и космического…
Позитрон
Позитрон [от лат. posi (tivus) - положительный и (элек)трон] (символ е+), элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Массы (me) и спины (J) П. и…
Мюоны
Мюоны (старое название - m-мезоны), нестабильные элементарные частицы со спином1/2, временем жизни 2,2=10-6сек и массой, приблизительно в 207 раз превышающей массу электрона. Существуют положительно…
Пи-мезоны
Пи-мезоны, p-мезоны, пионы, группа из трёх нестабильных элементарных частиц - двух заряженных (p+ и p-) и одной нейтральной (p0); принадлежат к классу сильно взаимодействующих частиц (адронов) и…
К-мезоны
К-мезоны, каоны, группа нестабильных элементарных частиц, в которую входят две заряженные (К+, К-) и две нейтральные (К0, ) частицы с нулевым спином и массой приблизительно в 970 раз большей, чем…
Гипероны
Гипероны (от греч. hyper - сверх, выше), тяжёлые нестабильные элементарные частицы с массой, большей массы нуклона (протона и нейтрона), обладающие барионным зарядом и большим временем жизни по…
Блэкетт Патрик Мейнард Стюарт
Блэкетт (Blackett) Патрик Мейнард Стюарт (р. 18.11.1897, Лондон), английский физик, член (с 1933) и президент Лондонского королевского общества (с 1965). В 1919 окончил Кембриджский университет. В…
Векслер Владимир Иосифович
Векслер Владимир Иосифович [19.2(4.3).1907, Житомир, - 22.9.1966, Москва], советский физик, академик АН СССР (1958; член-корреспондент 1946). Академик-секретарь Отделения ядерной физики АН СССР (1963-…
Зацепин Георгий Тимофеевич
Зацепин Георгий Тимофеевич [р. 15(28).5.1917, Москва], советский физик, член-корреспондент АН СССР (1968). Окончил Московский университет (1941). С 1944 работает в Физическом институте АН СССР, с 1963…
Оже Пьер Виктор
Оже (Auger) Пьер Виктор (р. 14.5.1899, Париж), французский физик. Учился в Высшей нормальной школе и Парижском университете. В 1927-69 работал в Парижском университете (с 1937 профессор). В 1941-45…
Радиоастрономия
Радиоастрономия, раздел астрономии, в котором небесные объекты - Солнце, звёзды, галактики и др. - исследуются на основе наблюдений излучаемых ими радиоволн в диапазоне от долей мм до несколкьих км…
Гинзбург Лев Владимирович
Гинзбург Лев Владимирович (р. 24.10.1921, Москва), русский советский писатель, переводчик. Член КПСС с 1945. Участник Великой Отечественной войны. В книгах очерков и памфлетов "Дудка Крысолова" (1960)…
Шкловский Иосиф Самуилович
Шкловский Иосиф Самуилович [р.18.6(1.7).1916, Глухов, ныне Сумской обл. УССР], советский астрофизик, член-корреспондент АН СССР (1966). Окончил Московский университет (1938). С 1938 работает в…
Сверхновые звёзды
Сверхновые звёзды, звёзды, испытавшие катастрофический взрыв, за которым последовало огромное увеличение их блеска. В максимуме блеска светимость С. з. в миллиард раз превышает светимость таких звёзд…
Калориметр ионизационный
Калориметр ионизационный, прибор для определения энергии частиц космических лучей (~1011эв и выше). В К. и. энергия космические частицы поглощается в толстом слое вещества (подобно тому, как в обычном…
Лоренца сила
Лоренца сила, сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Формула для Л. с. F была впервые получена Х. А. Лоренцом как результат обобщения опыта и имеет вид: F = eE +…
Пульсары
Пульсары (англ. pulsars, сокращенно от Pulsating Sources of Radioemission - пульсирующие источники радиоизлучения), слабые источники космического излучения, всплески которого следуют друг за другом с…
Радиационные пояса Земли
Радиационные пояса Земли, внутренние области земной магнитосферы, в которых магнитное поле Земли удерживает заряженные частицы (протоны, электроны, альфа-частицы), обладающие кинетической энергией…
Магнитные ловушки
Магнитные ловушки, конфигурации магнитного поля, способные длительное время удерживать заряженные частицы внутри определённого объёма пространства. М. л. природного происхождения является магнитное…
Хромосферные вспышки
Хромосферные вспышки, солнечные вспышки, яркие образования, наблюдаемые в активных областях хромосферы Солнца. Х. в. появляются внезапно и видны в течение непродолжительного времени - от нескольких…
Плазма
Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном…
Ионосфера
Ионосфера (от ионы и греч. sphaira - шар), ионизированная часть верхней атмосферы; расположена выше 50 км. Верхней границей И. является внешняя часть магнитосферы Земли. И. представляет собой…
Астрономическая единица
Астрономическая единица (а. е.), единица расстояний в астрономии, равная среднему расстоянию Земли от Солнца. Согласно списку фундаментальных постоянных астрономии, рекомендованному в 1964…
Синхротронное излучение
Синхротронное излучение, магнитотормозное излучение, излучение электромагнитных волн заряженными частицами, движущимися с релятивистскими скоростями в магнитном поле. Излучение обусловлено ускорением…
Квазары
Квазары (англ. quasar, сокращенное от quasistellar radiosource), квазизвёздные объекты, квазизвёзды, сверхзвёзды, небесные объекты, имеющие сходство со звёздами по оптическому виду и с газовыми…
Галактики
Галактики, гигантские звёздные системы, подобные нашей звёздной системе - Галактике, в состав которой входит Солнечная система. (Термин "галактики", в отличие от термина "Галактика", пишут со строчной…
Радиогалактики
Радиогалактики, галактики, для которых характерно радиоизлучение аномально большой мощности по сравнению с нормальными галактиками (такими, например, как наша Галактика или Большая галактика Андромеды…
Реликтовое излучение
Реликтовое излучение, электромагнитное излучение, заполняющее наблюдаемую часть Вселенной. Р. и. существовало уже на ранних стадиях расширения Вселенной и играло важную роль в её эволюции; является…
Коллапс гравитационный
Коллапс гравитационный (в астрономии), катастрофически быстрое сжатие звезды под действием сил тяготения (гравитации). Согласно существующим астрономическим представлениям, К. г. играет определяющую…
Рентгеновская астрономия
Рентгеновская астрономия, раздел наблюдательной и теоретической астрофизики, исследующий источники космического рентгеновского излучения в области длин волн l от 100 до 0,3 . В шкале энергий фотонов…
Гамма-астрономия
Гамма-астрономия, раздел наблюдательной внеатмосферной астрономии, связанный с исследованиями небесных тел, испускающих гамма-излучение. Начало Г.-а. было положено в апреле 1961, когда аппаратура…
Множественные процессы
Множественные процессы, рождение большого числа вторичных сильно взаимодействующих частиц (адронов) в одном акте столкновения частиц при высокой энергии. М. п. характерны для столкновения адронов…
Резонансы
Резонансы, резонансные частицы, короткоживущие возбуждённые состояния сильно взаимодействующих элементарных частиц (адронов). В отличие от др. нестабильных частиц, Р. распадаются в основном за счёт…
Тормозное излучение
Тормозное излучение, электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие Т. и. включают также излучение релятивистских…
Ионизация
Ионизация, образование положительных и отрицательных ионов и свободных электронов из электрически нейтральных атомов и молекул. Термином "И." обозначают как элементарный акт (И. атома, молекулы), так…
Комптона эффект
Комптона эффект, комптон-эффект, упругое рассеяние электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн -…
Черенкова-Вавилова излучение
Черенкова-Вавилова излучение, Черенкова-Вавилова эффект, излучение света электрически заряженной частицей, возникающее при её движении в среде со скоростью, превышающей фазовую скорость света в этой…
Диполь
Диполь (от ди... и греч. polos - полюс) электрический, совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга. Основной…
Нейтрино
Нейтрино (итал. neutrino, уменьшительное от neutrone - нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином1/2 (в…
Антинейтрино
Антинейтрино (символ или ), нейтральная элементарная частица с нулевой массой и полуцелым спином, являющаяся античастицей по отношению к нейтрино. Существуют 2 типа А., отвечающие 2 типам нейтрино, -…
Космические лучи
Космические лучи, поток частиц высокой энергии, преимущественно протонов, приходящих на Землю из мирового пространства (первичное излучение), а также рожденное ими в атмосфере Земли в результате взаимодействия с атомными ядрами вторичное излучение, в котором встречаются практически все известные элементарные частицы.
К. л. — уникальный природный источник частиц высоких и сверхвысоких энергий, позволяющих изучать процессы превращения элементарных частиц и их структуру. Наряду с этим К. л. дают возможность обнаруживать и изучать астрофизические процессы большого масштаба, связанные с ускорением и распространением частиц космического излучения в межпланетной, межзвёздной, а возможно, и в межгалактической среде.
Большинство частиц первичного космического излучения имеет энергию больше 109 эв (1 Гэв), а энергия отдельных частиц достигает 1020—1021 эв (а может быть, и выше). До создания мощных ускорителей заряженных частиц К. л. были единственным источником частиц высоких энергий. В К. л. были впервые обнаружены многие неизвестные ранее элементарные частицы и получены первые данные об их распадах и взаимодействиях с атомными ядрами. Хотя современные ускорители (в особенности ускорители на встречных пучках) позволяют проводить тщательное изучение процессов взаимодействия частиц вплоть до энергий 1011—1012 эв, К. л. по-прежнему являются единственным источником сведений о взаимодействиях частиц при ещё более высоких энергиях.
Подавляющая часть первичных К. л. приходит к Земле извне Солнечной системы — из окружающего её галактического пространства (Галактики), т. н. галактические К. л., и лишь небольшая их часть, преимущественно умеренных энергий (<1 Гэв), связана с активностью Солнца, т. н. солнечные К. л. Однако в периоды высокой солнечной активности могут происходить кратковременные сильные возрастания потоков солнечных К. л. в межпланетном пространстве. Частицы самых высоких энергий (>1017эв) имеют, возможно, внегалактическое происхождение (приходят из Метагалактики).
Общий поток энергии, приносимой К. л. на Землю (~0,01 эрг на 1 см2 в 1 сек), чрезвычайно мал по сравнению с излучаемым на Землю потоком солнечной энергии и сравним с энергией видимого излучения звёзд. Однако не исключено, что в далёком прошлом К. л. сыграли определённую роль в ускорении эволюции жизни на Земле.
В масштабах всей Галактики средняя плотность энергии К. л. велика (~ 1 эв/см3) — порядка плотностей всех других видов энергии: энергии тяготения (гравитации), магнитных полей, кинетической энергии движения межзвёздного газа, энергии электромагнитного излучения звёзд. Поэтому К. л. могут оказывать заметное влияние на эволюцию Галактики в целом.
В физике К. л. четко выделяются 2 основных направления исследований: ядерно-физическое (взаимодействие К. л. с веществом; генерация, свойства и взаимодействия элементарных частиц) и космо-физическое (состав и энергетический спектр первичных К. л.; генерация и распространение солнечных и галактических К. л.; изменение во времени интенсивности К. л. и взаимодействие К. л. с магнитосферой Земли, с солнечным ветром и ударными волнами в межпланетном пространстве и др.). По мере развития техники ускорителей область исследований на первом направлении постепенно сдвигается в сторону высоких энергий. Всё более глубокое изучение ближнего космоса прямыми методами с помощью спутников и космических ракет перемещает центр тяжести второго направления на более далёкие космические объекты. Поэтому научные результаты, получаемые с помощью К. л., носят, как правило, разведывательный, первооткрывательский, характер и имеют фундаментальное значение как для развития физики микромира (в области характерных размеров £10-13 см), так и для развития физики космоса (108—1028 см).
Открытие и основные этапы исследования К. л. Существование К. л. было установлено в 1912 В. Гессом по производимой ими ионизации молекул воздуха; возрастание ионизации с высотой доказывало их внеземное происхождение. Наблюдения следов частиц К. л. в Вильсона камере, помещенной в поле лабораторного магнита (Д. В. Скобельцын, 1927), и отклонения их в магнитном поле Земли с помощью газоразрядных счётчиков, поднимаемых в стратосферу на баллонах (С. Н. Вернов и Р. Милликен, 1935—37), доказали, что первичные К. л. представляют собой поток заряженных частиц, в основном протонов (ядер атомов водорода). При этом были измерены и энергии большей части К. л. (до 15 Гэв). С помощью ядерных фотографических эмульсий, поднятых на высоту ~ 30 км (Б. Питерс и др., 1948), в составе первичных К. л. были обнаружены следы ядер более тяжёлых элементов, чем водород, вплоть до ядер железа (рис. 1).
Детальное изучение зарядов и масс частиц вторичных К. л. привело к открытию многих новых элементарных частиц, в частности позитрона, мюона, пи-мезона, К-мезона, L-гиперона (1932—49). В 1932 П. Блэкетт и Дж. Оккиалини впервые обнаружили в камере Вильсона группы близких по направлению генетически связанных частиц космического излучения — т. н. ливни. В опытах 1945—49 на высокогорных станциях К. л. (В. И. Векслер, Н. А. Добротин и др.) и в стратосфере (С. Н. Вернов и др.) было установлено, что вторичное космическое излучение образуется в результате взаимодействия первичных К. л. с ядрами атомов воздуха. Позднее Г. Т. Зацепин показал, что тот же механизм, но при более высоких энергиях (³1014 эв) объясняет развитие открытых ранее в К. л. (П. Оже, 1938) широких атмосферных ливней — потоков из многих миллионов частиц, покрывающих на уровне моря площади порядка 1 км2 и более.
Для правильного подхода к проблеме происхождения К. л. большую роль сыграли успехи радиоастрономии. Связанное с К. л. нетепловое космическое радиоизлучение позволило обнаружить их возможные источники. В 1955 В. Л. Гинзбург и И. С. Шкловский на основе радио-астрономических наблюдений и энергетических оценок впервые количественно обосновали гипотезу о сверхновых звёздах как одном из основных галактических источников К. л.
Базой для космофизического направления исследований явилась созданная в 50—60-е гг. обширная мировая сеть станций К. л. (свыше 150), на которых проводится непрерывная регистрация космического излучения. Многие станции находятся высоко в горах, на некоторых станциях проводятся подземные наблюдения, регулярно посылаются в стратосферу баллоны с приборами автоматической регистрации К. л.
Новые возможности прямого изучения первичных К. л. в очень широком диапазоне энергий открылись в связи с подъёмом регистрирующей аппаратуры на искусственных спутниках Земли и межпланетных автоматических станциях. В частности, с помощью калориметра ионизационного на спутниках серии "Протон" был впервые непосредственно измерен энергетический спектр первичных К. л. до энергии ~1015 эв (советский физик Н. Л. Григоров и др., 1965— 1969). Позднее с помощью искусственных спутников Луны и Марса, а также на советском "Луноходе-1" (1970—71) были проведены длительные измерения вариаций состава и интенсивности К. л, за пределами магнитосферы Земли,
Первичные галактические К. л. Геомагнитные эффекты. Все экспериментальные данные согласуются с тем, что поток первичных К. л., летящих к Земле из Галактики, с высокой степенью точности (~0,1%) изотропен, т. е. не зависит от направления. Попадая в магнитное поле Земли, заряженные частицы космического излучения отклоняются от первоначального направления (в результате действия на них Лоренца силы). Поэтому интенсивность К. л. и их энергетический спектр в околоземном пространстве зависят как от геомагнитных координат места наблюдения, так и от направления прихода К. л. Отклоняющее действие геомагнитного поля проявляется тем сильнее, чем больше угол J между направлением движения частицы и направлением силовой линии поля, т. е. чем меньше геомагнитная широта j места наблюдения. Т. о., при одной и той же энергии частиц отклонение максимально в экваториальных областях и минимально вблизи магнитных полюсов. У экватора этот "геомагнитный барьер" не пропускает к Земле летящие перпендикулярно её поверхности протоны с энергией меньше ~15 Гэв и ядра с энергией ~7,5 Гэв на нуклон (протон пли нейтрон). С увеличением геомагнитной широты пороговая энергия частиц быстро уменьшается (~cos4j), и в полярных областях геомагнитный барьер практически отсутствует. Наряду с регулярной широтной зависимостью на интенсивности К. л. заметно сказываются аномалии геомагнитного поля (особенно в районе Южной Атлантики). В результате распределение интенсивности К. л. по земному шару имеет довольно сложный характер (рис. 2). В полярных областях (j³ 60°) интенсивность К. л. у границы атмосферы составляет в годы минимума солнечной активности около 0,4 частицы на 1 см2 в 1 сек в единице телесного угла.
С ростом энергии К. л. их интенсивность сначала медленно, а затем всё более резко уменьшается (рис. 3, а). При энергиях 1010—1015 эв поток частиц с энергией выше некоторой заданной энергии E (интегральный спектр) падает по закону ~ E-1,7 (рис. 3, б). В области энергий > 1015 эв единственным источником сведений об энергетическом спектре К. л. (рис. 3, е) являются данные по широким атмосферным ливням (см. ниже): этот спектр уже нельзя представить единым степенным законом, что может объясняться примесью метагалактических К. л.
Более 90% частиц первичных К. л. всех энергий составляют протоны, примерно 7% — a-частицы и лишь небольшая доля (~ 1%) приходится на ядра элементов более тяжёлых, чем водород и гелий. Несмотря на это, ядра с Z > 1 несут около 50% всей энергии К. л. Уменьшение распространённости с ростом атомного номера элемента в К. л. идёт медленнее, чем для вещества небесных тел во Вселенной вообще. Особенно велико в К. л. содержание ядер лёгких элементов Li, Be, В, естественная распространённость которых чрезвычайно мала (£ 10-7%). Имеется также избыток тяжёлых ядер (Z ³ 6). Из этого следует, что в источниках К. л. преобладает ускорение тяжёлых ядер, а более лёгкие ядра возникают за счёт расщепления тяжёлых ядер (фрагментации) при их взаимодействии с межзвёздным веществом. В период 1966—71 с помощью ядерных фотоэмульсий и твердотельных детекторов заряженных частиц в К. л. обнаружены ядра значительно тяжелее железа — вплоть до урана, а возможно и ещё более тяжёлые, причём их потоки падают с ростом Z примерно как Z-7— Z-8. В наиболее изученной области энергий (>2,5 Гэв на нуклон) ядерный состав К. л. таков: протоны — около 92%, a-частицы — около 7%, ядра с Z = 3—5 — около 0,1—0,15%, с Z = 6—9 — около 0,5% с Z = 10—15 — около 0,1—0,15%, с Z = 16—25— около 0,04%, с Z = 26 (железо) — 0,025%, с Z > 30— ~10-5%.
По содержанию в К. л. Li, Be, В, которых нет в источниках (эти элементы быстро выгорают в результате протекающих в звёздах термоядерных реакций) и которые образуются только в результате фрагментации, было оценено среднее количество вещества, через которое проходят К. л. на пути от источников до Земли; оно оказалось равным 3—5 г/см2. Отсюда, если известна средняя плотность вещества в Галактике, можно оценить путь, проходимый К. л. в Галактике, и среднее время жизни К. л. (см. ниже).
В состав первичных К. л. входят также электроны и позитроны (~1%) и фотоны высоких энергий — g-кванты (~0,01% при энергиях > 100 Мэв). Несмотря на незначительную долю в К. л., g-кванты представляют особый интерес, поскольку, не отклоняясь магнитными полями межзвёздного пространства, они позволяют обнаруживать отдельные квазиточечные источники К. л. Найдено уже около 20 таких источников. Из них наиболее интересен пульсар NP 0532 в Крабовидной туманности, дающий поток g-квантов 0,1—0,5 на 1 м2 в 1 сек и являющийся одновременно мощным пульсирующим источником рентгеновского излучения. Кроме того, обнаружен диффузный поток -l квантов из центра Галактики с интенсивностью ~ 1 частица на 1 м2 в 1 сек в расчёте на единицу телесного угла.
Внутри магнитосферы Земли, на высотах ³ 1000 км от земной поверхности, помимо потока К. л., присутствуют гораздо более интенсивные потоки протонов и электронов, захваченные геомагнитным полем и образующие радиационный пояс Земли. Происхождение внутренней области радиационного пояса объясняется в основном обратным потоком (альбедо) нейтронов, выбиваемых К. л. из ядер атомов, составляющих атмосферу Земли: нейтроны распадаются на протоны и электроны, которые удерживаются в естественной магнитной ловушке магнитосферы Земли.
Солнечные К. л. Наиболее сильные возрастания интенсивности К. л. в виде нерегулярных кратковременных всплесков связаны с хромосферными вспышками на Солнце. При таких вспышках происходит ускорение заряженных частиц. солнечной плазмы электромагнитными полями (по-видимому, у границ солнечных пятен), т. е. генерация солнечных К. л. Предложен, в частности, весьма вероятный механизм ускорения частиц электрическими полями, индуцируемыми при быстром сближении областей солнечной плазмы с противоположно направленными магнитными полями (советский физик С. И. Сыроватский, 1965).
Потоки солнечных К. л. во время некоторых хромосферных вспышек в сотни раз превышают потоки галактических К. л. Так, при рекордном всплеске 23 февраля 1956 наблюдалось 300-кратное возрастание потока К. л. с энергией > 3 Гэв, что могло бы представлять серьёзную угрозу безопасности космических полётов. Поэтому очень важны систематические наблюдения хромосферных вспышек, всплесков радио- и рентгеновского излучения и др. проявлений солнечной активности, позволяющие в тесной связи с измерениями интенсивности К. л. прогнозировать радиационную обстановку на трассах космических полётов.
В среднем вклад солнечных К. л. в общую интенсивность космического излучения составляет несколько процентов.
Химический состав солнечных К. л. очень близок к составу солнечной атмосферы. В отличие от галактич. К. л., в них отсутствуют ядра Li, Be, В. Это показывает, что количество вещества, проходимое солнечными К. л., чрезвычайно мало (< 0,1 г/см2) и что их генерация не может происходить в глубине солнечной атмосферы, где плотность вещества слишком велика (вероятнее всего ускорение происходит в верхней хромосфере и нижней короне Солнца).
Частицы солнечных К. л. по сравнению с галактическими обладают более низкими энергиями (их энергетический спектр более мягкий). Энергии протонов обычно ограничиваются долями Гэв, и лишь при очень редких мощных хромосферных вспышках генерируются протоны с энергиями до 100 Гэв; нижняя граница энергии регистрируемых электронов солнечных К. л. составляет десятки кэв (т. е. близка к энергии частиц солнечного ветра). Солнечные К. л. малой энергии оказывают существенное воздействие на состояние ионосферы Земли в высоких широтах, вызывая дополнительную ионизацию её нижних слоев. Это приводит к ослаблению радиоволн, а в некоторых случаях — к полному прекращению радиосвязи на коротких волнах. Данные о распространении солнечных К. л., их энергетическом спектре и угловой анизотропии позволяют получить информацию о структуре магнитного поля в межпланетном пространстве. Изучение пространственных и временных вариаций (изменений) потоков солнечных К. л. помогает лучше понять такие геофизические явления, как геомагнитные бури, полярные сияния и пр.
Характер возрастания потока солнечных К. л. на Землю показывает, что в начальный период после вспышки поток существенно анизотропен, причём его максимум направлен под углом примерно 45° к западу от направления на Солнце. Это явилось первым прямым доказательством изогнутости силовых линий межпланетного магнитного поля в виде спиралей Архимеда (см. рис. 4).
Модуляция галактических К. л. солнечным ветром. Среди периодических временных вариаций интенсивности галактич. К. л. главную роль играют модуляции интенсивности, совпадающие с 11-летним циклом солнечной активности. Эти модуляции связаны с рассеянием и "выметанием" К. л. галактического происхождения неоднородно намагниченными регулярными потоками плазмы, выбрасываемой из Солнца со скоростями 300—500 км/сек. Такие потоки, получившие название солнечного ветра, распространяются далеко за пределы орбиты Земли [на десятки астрономических единиц (а. е.); 1 а. е. " 150 млн. км], постепенно переходя в турбулентное движение плазмы в слое, пограничном с невозмущённым галактическим магнитным полем (рис. 4). Согласно данным о двух последних циклах (1948—59 и 1959—70), интенсивность К. л. вблизи границы земной атмосферы во время максимума солнечной активности снижается в 2—2,5 раза по сравнению с величиной, характерной для минимума. На уровне моря, куда частицы малой энергии не доходят, амплитуда 11-летних вариаций К. л. оказывается гораздо меньшей (рис. 5).
Существуют и другие, менее ярко выраженные типы модуляций галактич. К. л., обусловленные различными причинами. Это, в частности, 27-суточные вариации, связанные с периодом вращения Солнца вокруг своей оси, а также солнечно-суточные вариации, связанные с вращением Земли и с анизотропией электромагнитных свойств среды, в которой распространяются К. л. Совокупность сведений о модуляционных эффектах приводит большинство исследователей к выводу, что эффективные размеры области модуляции К. л. солнечным ветром составляют 2—5 а. е.
Происхождение и возраст галактических К. л. Основным источником К. л. считаются взрывы сверхновых звёзд. При каждом таком взрыве происходит расширение с огромной скоростью оболочки звезды и возникают ударные волны в плазме, приводящие к ускорению заряженных частиц до энергий ~ 1015 эв и выше. Главным экспериментальным доводом в пользу гипотезы происхождения К. л. от взрывов сверхновых явилось впервые прямое радиоастрономическое наблюдение частично поляризованного радиоизлучения от Крабовидной туманности (1957), возникшей в результате взрыва в 1054 сверхновой, сравнительно близкой к Солнечной системе. Свойства этого излучения таковы, что его следует приписать синхротронному излучению (магнитотормозному излучению) — излучению быстрых электронов в магнитных полях, "вмороженных" в потоки звёздной плазмы, выброшенной при взрыве этой сверхновой. Позднее удалось наблюдать магнитотормозное радиоизлучение и от других, более далёких туманностей, рожденных взрывами сверхновых. Дальнейшие наблюдения показали, что спектр магнитотормозного излучения электронов простирается до оптического, рентгеновского и даже g-диапазонов, и это связано с очень высокими энергиями электронов (до ~ 1012 эв). Естественно, что наряду с электронами в расширяющихся оболочках сверхновых происходит интенсивное ускорение и тяжёлых заряженных частиц — протонов и ядер (однако вследствие своей большой массы они не испытывают заметных потерь энергии на излучение в магнитных полях). При этом чем тяжелее ядро, тем благоприятнее могут быть начальные условия ускорения (т. н. инжекция): тяжёлые ядра могут находиться в неполностью ионизованном состоянии и поэтому сравнительно слабо отклоняться в магнитных полях, что облегчает их "утечку" за пределы плотной оболочки звезды (в которой магнитное поле велико). Если учесть среднюю частоту взрывов сверхновых в Галактике вообще (1 раз в 30—50 лет) и полное энерговыделение в каждом взрыве (1051—1052 эрг, или 1063—1064 эв) и предположить, что ~ 1% этой энергии тратится на ускорение заряженных частиц, то можно объяснить как среднюю плотность энергии К. л. (~ 1 эв/см3), так и отсутствие заметных колебаний потока К. л.
Методами радиоастрономии были зарегистрированы и ещё более мощные источники К. л. (точнее, их электронной компоненты), находящиеся далеко за пределами нашей Галактики. Такими источниками являются, в частности, интенсивно излучающие квазизвёздные объекты малой протяжённости — квазары, ядра некоторых галактик, испытывающие резкое расширение взрывного типа, а также радиогалактики с характерными для них мощными выбросами вещества (сопровождающимися радиоизлучением в масштабе целых галактик).
Ускоренные в галактических источниках тяжёлые заряженные частицы распространяются затем по сложным траекториям в межзвёздном пространстве, где на них действуют слабые [(3—6)10-6 гс]нерегулярные и неоднородные магнитные поля облаков межзвёздной плазмы. Заряженные частицы "запутываются" в этих магнитных полях (напряжённость которых значительно повышается в областях спиральных рукавов Галактики, одновременно с увеличением концентрации межзвёздной плазмы). При этом движение К. л. носит характер диффузии, при которой частицы с энергиями до 1017—1018 эв могут удерживаться в пределах нашей Галактики в течение десятков млн. лет. Диффузионное движение частиц К. л. обусловливает практически полную изотропию их потока. Лишь при более высоких энергиях радиусы кривизны траекторий частиц (особенно протонов) становятся сравнимыми с размерами галактик и происходит интенсивная "утечка" К. л. в метагалактическое пространство. Несмотря на высокую степень разреженности вещества, длительные странствия частиц в Метагалактике приводят к потерям энергии в новых процессах — фотоядерных реакциях на фоновом электромагнитном излучении (оно называется реликтовым излучением), оставшемся от ранних стадий расширения некогда горячей Вселенной. Наличие этого процесса сильно снижает вероятность того, что наиболее энергичная часть спектра К. л. обусловлена метагалактической компонентой.
Принципиально новые возможности экспериментального изучения источников наиболее энергичной части спектра К. л. (вплоть до энергий 1020—1021 эв) открылись после обнаружения уникальных астрофизических объектов — пульсаров. По современным представлениям, пульсары — это небольшие (~ 10 км в диаметре) нейтронные звёзды, возникшие в результате быстрого гравитационного сжатия (коллапса гравитационного) неустойчивых звёзд типа сверхновых. Гравитационный коллапс приводит к колоссальному увеличению плотности вещества звезды (до ядерной плотности и выше), магнитного поля (до 1013 гс) и скорости вращения (до 103 оборотов в сек). Всё это создаёт благоприятные условия для ускорения тяжёлых заряженных частиц до исключительно высоких энергий ~ 1021 эв и электронов до энергий ~ 1012 эв. И действительно, наблюдения показали, что наряду с радиоизлучением пульсары испускают (с тем же периодом) световое, рентгеновское, а иногда и g-излучение, которые можно объяснить только процессом магнитотормозного излучения очень быстрых электронов. Т. о., синхротронное излучение электронов К. л., обусловленное сильными магнитными полями, локализованными вблизи неустойчивых "горячих" объектов — источников К. л., позволяет решать проблему происхождения К. л. методами наблюдательной астрономии (радиоастрономии, рентгеновской астрономии, гамма-астрономии).
Важную дополнительную информацию об источниках и возрасте К. л. дают исследования ядерного состава К. л. Из небольшого относительного содержания в К. л. ядер Be следует, что радиоактивный изотоп 10Ве (среднее время жизни которого около 2 млн. лет) успевает практически полностью распасться, откуда получается оценка верхнего предела возраста К. л. 20—50 млн. лет. Примерно того же порядка (10—30 млн. лет) оценки получаются из относительного содержания группы лёгких ядер (Li, Be, В) в целом, а также по среднему времени, которое требуется электронам К. л. для диффузного распространения от внутригалактических источников до границ Галактики. Анализ состава сверхтяжёлой ядерной компоненты (Z > 70) даёт средний возраст К. л. не более 10 млн. лет.
Ещё один способ проверки различных гипотез происхождения К. л. — измерение интенсивности К. л. в далёком прошлом, в частности в периоды известных вспышек ближайших сверхновых (например, вспышки в 1054). Существуют два метода, с помощью которых можно было бы обнаружить эффекты возрастания интенсивности К. л. в прошлом не только в результате взрыва сравнительно недалёких от Солнечной системы сверхновых звёзд, но и в результате возможных гораздо более мощных взрывных процессов в ядре Галактики. Это радиоуглеродный метод, в котором по концентрации изотопа 14С в различных годичных кольцах очень старых деревьев определяют темп накопления в атмосфере 14C, образующегося в результате ядерных реакций под действием К. л., и метеоритный метод, основанный на изучении состава стабильных и радиоактивных изотопов метеоритного вещества, подвергавшегося длительному воздействию К. л Эти методы свидетельствуют о том, что средняя интенсивность К. л. сравнительно мало отличалась от современной в течение десятков тысяч и миллиарда лет соответственно. Постоянство интенсивности К. л. в течение миллиарда лет делает маловероятной гипотезу о происхождении всех К. л. в процессе взрыва ядра нашей Галактики, который считается ответственным за образование галактического гало (пока не доказанного прямыми наблюдениями).
Взаимодействие К. л. с веществом.
1. Ядерно-активная компонента К- л. и множественная генерация частиц. При взаимодействии протонов и др. ядер первичных К. л. высокой энергии (~ несколько Гэв и выше) с ядрами атомов земной атмосферы (главным образом азота и кислорода) происходит расщепление ядер и рождение нескольких нестабильных элементарных частиц (т. н. множественные процессы), в основном p-мезонов (пионов) — заряженных (p+, p-) и нейтральных (p0) с временами жизни 2,5×10-8 сек и 0,8×10-16 сек соответственно. Со значительно меньшей вероятностью (в 5—10 раз) рождаются К-мезоны и с ещё меньшей — гипероны и практически мгновенно распадающиеся резонансы. На рис. 6 приведена фотография множественного рождения частиц, зарегистрированного в ядерной фотоэмульсии; частицы вылетают из одной точки в виде узкого пучка. Среднее число вторичных частиц, образующихся в одном акте взаимодействия протона (или p-мезона) с лёгким ядром пли одним нуклоном такого ядра, возрастает с ростом энергии E сначала по степенному закону, близкому к E1/3 (вплоть до E "20 Гэв), а затем (в области энергий 2×1010—1013 эв) этот рост замедляется и лучше описывается логарифмической зависимостью. В то же время косвенные данные по широким атмосферным ливням указывают на процессы значительно более высокой множественности при энергиях ³ 1014 эв.
Угловая направленность потока рожденных частиц в широком интервале энергии первичных и рожденных частиц такова, что составляющая импульса, перпендикулярная направлению первичной частицы (т. н. поперечный импульс), составляет в среднем 300—400 Мэв/с, где с — скорость света в вакууме (при очень высоких энергиях E частицы, когда энергией покоя частицы mc2 можно пренебречь по сравнению с её кинетической энергией, импульс частицы р = E/c; поэтому в физике высоких энергий импульс обычно измеряют в единицах Мэв/с).
Первичные протоны при столкновении теряют в среднем около 50% начальной энергии (при этом они могут испытывать перезарядку, превращаясь в нейтроны).
Образующиеся при расщеплении ядер вторичные нуклоны (протоны и нейтроны) и рожденные в столкновениях заряженные пионы высокой энергии будут также (вместе с потерявшими часть энергии первичными протонами) участвовать в ядерных взаимодействиях и вызывать расщепление ядер атомов воздуха и множественное образование пионов. Средний пробег, на котором осуществляется одно ядерное взаимодействие, принято измерять удельной массой пройденного вещества он составляет для первичных протонов ~ 90 г/см2 воздуха, т. е. ~9% всей толщи атмосферы. С ростом атомного веса вещества А средний пробег постепенно возрастает (примерно как А1/3), достигая ~ 160 г/см2 для свинца. Рождение пионов происходит в основном на больших высотах (20—30 км), но продолжается в меньшей степени по всей толще атмосферы и даже на глубине нескольких м грунта.
Вылетающие при ядерных столкновениях нуклоны ядер и не успевшие распасться заряженные пионы высокой энергии образуют ядерно-активную компоненту вторичных К. л. Многократное повторение последовательных, каскадных взаимодействий нуклонов и заряженных пионов с ядрами атомов воздуха, сопровождающихся множественной генерацией новых частиц (пионов) в каждом акте взаимодействия, приводит к лавинообразному возрастанию числа вторичных ядерно-активных частиц и к быстрому уменьшению их средней энергии. Когда энергия отдельной частицы становится меньше 1 Гэв, рождение новых частиц практически прекращается и остаются (как правило) только процессы частичного (а иногда полного) расщепления атомного ядра с вылетом нуклонов сравнительно небольших энергий. Общий поток частиц ядерно-активной компоненты по мере дальнейшего проникновения в глубь атмосферы уменьшается (рис. 7, кривая 1), и на уровне моря (~1000 г/см2) остаётся менее 1% ядерно-активных частиц.
2. Электронно-фотонные ливни и мягкая компонента вторичных К. л. Образующиеся при взаимодействиях частиц ядерно-активной компоненты с атомными ядрами нейтральные пионы практически мгновенно распадаются (вследствие их очень малого времени жизни) на два фотона (g) каждый: p°®2g. Этот процесс даёт начало электронно-фотонной компоненте К. л. (она называется также мягкой, т. е. легко поглощаемой, компонентой).
В сильных электрических полях атомных ядер эти фотоны рождают электронно-позитронные пары e- e+(g®e-+e+), а электроны и позитроны, в свою очередь, путём тормозного излучения испускают новые фотоны (е±®е±+ g) и т. д. Такие процессы, носящие каскадный характер, приводят к лавинообразному нарастанию общего числа частиц — к образованию электронно-фотонного ливня. Развитие электронно-фотонного ливня приводит к быстрому дроблению энергии p0 на всё большее число частиц, т. е. к быстрому уменьшению средней энергии каждой частицы ливня. После максимального развития мягкой компоненты, достигаемого на высоте около 15 км (~ 120 г/см2), происходит её постепенное затухания (рис. 7, кривая 2). Когда энергия каждой частицы становится меньше некоторого критического значения (для воздуха критическая энергия составляет около 100 Мэв), преобладающую роль начинают играть потери энергии на ионизацию атомов воздуха и комптоновское рассеяние (см. Комптона эффект); увеличение числа частиц в ливне прекращается, и его отдельные частицы быстро поглощаются. Практически полное поглощение электронно-фотонной компоненты происходит на сравнительно небольших толщах вещества (особенно большой плотности); в лабораторных условиях для этого достаточно иметь свинцовый экран толщиной 10—20 см (в зависимости от энергии частиц). Электронно-фотонный ливень, зарегистрированный в камере Вильсона, приведён на рис. 8.
Основной характеристикой электронно-фотонного ливня является изменение числа частиц с увеличением толщины пройденного вещества — т. н. каскадная кривая (рис. 9). В соответствии с теорией этого процесса число частиц в максимуме каскадной кривой примерно пропорционально энергии первоначальной частицы. Углы отклонения частиц от оси ливня определяются рассеянием электронов и позитронов, а средний поперечный импульс составляет около 20 Мэв/с.
Наряду с p°-мезонами в К. л. существуют и др. источники образования электронно-фотонных ливней. Это электроны и g-кванты высокой энергии (> 100 Мэв) первичных К. л., а также d-электроны, т. е. атомарные электроны, выбиваемые за счёт прямого электрического взаимодействия проходящих сквозь вещество быстрых заряженных частиц К. л.
При очень высоких энергиях (³ 1014 эв)электронно-фотонные ливни в земной атмосфере приобретают специфические черты широких атмосферных ливней. В таких ливнях очень большое число последовательных каскадов размножения приводит к сильному росту общего потока частиц (исчисляемого в зависимости от энергии многими миллионами и даже миллиардами) и к их широкому пространственному расхождению — на десятки и сотни м от оси ливня. В широких атмосферных ливнях у поверхности Земли одна частица ливня приходится примерно на несколько (2—3) Гэв энергии первичной частицы, вызвавшей ливень. Это даёт возможность оценивать по полному потоку частиц в ливне энергию приходящих на границу земной атмосферы "предков" этих ливней, что невозможно сделать непосредственно из-за крайне малой вероятности их прямого попадания в точку наблюдения.
Вследствие большой плотности потока частиц в широком атмосферном ливне испускается сравнительно интенсивное направленное электромагнитное излучение как в оптической области спектра, так и в радиодиапазоне. Оптическая часть свечения определяется процессом Черенкова — Вавилова излучения, поскольку скорости большинства частиц превышают фазовую скорость распространения света в воздухе. Механизм радиоизлучения более сложен; он связан, в частности, с тем, что магнитное поле Земли вызывает пространственное разделение потоков отрицательно и положительно заряженных частиц, что эквивалентно возникновению переменного во времени электрич. диполя.
3. Космические мюоны и нейтрино. Проникающая компонента вторичного излучения. Возникающие в атмосфере под действием К. л. заряженные пионы участвуют в развитии ядерного каскада лишь при достаточно больших энергиях — до тех пор, пока не начинает сказываться их распад на лету. В верхних слоях атмосферы процессы распада становятся существенными уже при энергиях £ 1012 эв.
Заряженный пион (с энергией £ 1011 эв) распадается на мюон m±(заряженную нестабильную частицу с массой покоя mm "207 me, где me — масса электрона, и средним временем жизни t0 " 2×10-6 сек)и нейтрино n (нейтральную частицу с нулевой массой покоя). В свою очередь, мюон распадается на позитрон (или электрон), нейтрино и антинейтрино. Т. к. скорости мюонов (как и всех остальных частиц К. л.) очень близки к скорости света с, то, в соответствии с теорией относительности, среднее время до их распада t достаточно велико — пропорционально полной энергии E, t = . Кроме того, мюоны, не являясь ядерно-активными частицами, слабо взаимодействуют с веществом (посредством