Примеры статей
Ультразвук
Ультразвук, упругие колебания и волны с частотами приблизительно от 1,5- 2 =104гц (15-20 кгц) и до 109гц (1 Ггц), область частот У. от 109 до 1012-13гц принято называть гиперзвуком. Область частот У…
Свистки
Свистки, акустические излучатели, преобразующие энергию струи в энергию акустических колебаний. В отличие от сирены, в С. нет движущихся частей, поэтому они более просты в изготовлении и удобны в…
Сирена
Сирена [франц. sirene, от греч. seiren - сирена (см. Сирены в древнегреческой мифологии)], акустический излучатель, действие которого основано на периодическом прерывании потока газа (или жидкости)…
Электроакустические преобразователи
Электроакустические преобразователи, устройства, преобразующие электрическую энергию в акустическую (энергию упругих колебаний среды) и обратно. В зависимости от направления преобразования различают Э…
Концентратор акустический
Концентратор акустический, устройство для увеличения интенсивности звука. Известны фокусирующие и волноводные К. а. Фокусирующие К. а. выполняются обычно либо в виде зеркальных систем, либо в виде так…
Ультразвуковая сварка
Ультразвуковая сварка, способ сварки с применением ультразвука для сообщения колебаний инструменту, прижимаемому к поверхностям свариваемых материалов. Сварка металлов происходит в твёрдой фазе (без…
Ультразвуковой станок
Ультразвуковой станок, станок для размерной обработки различных твёрдых материалов, в котором ультразвуковые колебания сообщаются инструменту и через частицы абразивной суспензии передаются на…
Вибрационное резание
Вибрационное резание, способ обработки металла резанием, характеризующийся тем, что инструменту наряду с основным движением сообщается дополнительное колебательное движение относительно обрабатываемой…
Кавитация
Кавитация (от лат. cavitas - пустота), образование в капельной жидкости полостей, заполненных газом, паром или их смесью (так называемых кавитационных пузырьков, или каверн). Кавитационные пузырьки…
Вибрационная обработка
Вибрационная обработка, метод механической или химико-механической обработки деталей и заготовок путём сглаживания микронеровностей и съёма частиц материала с обрабатываемой поверхности частицами…
Коагуляция (свёртывание)
Коагуляция (от лат. Coagulatio - свёртывание, сгущение), слипание частиц коллоидной системы при их столкновениях в процессе теплового (броуновского) движения, перемешивания или направленного…
Флотация
Флотация (франц. flottation, от flotter - плавать), процесс разделения мелких твёрдых частиц (главным образом минералов), основанный на различии их в смачиваемости водой. Гидрофобные (плохо…
Магнитострикционный преобразователь
Магнитострикционный преобразователь, электромеханический или электроакустический преобразователь, в котором энергия магнитного поля преобразуется в энергию механических колебаний и наоборот благодаря…
Диспергирование
Диспергирование (от лат. dispergo - рассеиваю, рассыпаю), тонкое измельчение твёрдых тел и жидкостей в окружающей среде, приводящее к образованию дисперсных систем; порошков, суспензий, эмульсий. Д…
Аэрозоли
Аэрозоли (от аэро... и золи), системы, состоящие из твёрдых или жидких частиц, взвешенных в газообразной среде. По характеру образования различают диспергационные и конденсационные А. Диспергационные…
Механохимия полимеров
Механохимия полимеров, раздел науки о полимерах, изучающий химические превращения, которые происходят в полимерных телах под действием механических сил. Энергия механических воздействий на полимерные…
Хемосорбция
Хемосорбция, химическая сорбция, поглощение жидкостью или твёрдым телом веществ из окружающей среды, сопровождающееся образованием химических соединений. В более узком смысле Х. рассматривают как…
Акустический пылеуловитель
Акустический пылеуловитель, установка для очистки запылённого воздуха путём осаждения тонкодисперсной пыли в звуковом или ультразвуковом поле. Действие А. п. основано на способности звуковых волн…
Электрофизические и электрохимические методы обработки
Электрофизические и электрохимические методы обработки, общее название методов обработки конструкционных материалов непосредственно электрическим током, электролизом и их сочетанием с механическим…
Ультразвуковая обработка
Ультразвуковая обработка, воздействие ультразвука (обычно с частотой 15—50 кгц) на вещества в технологических процессах. Для У. о. применяют технологические аппараты с электроакустическими излучателями либо аппараты в виде свистков и сирен. Основной элемент излучателя — электроакустический преобразователь (магнитострикционный или пьезоэлектрический) — соединён с согласующим устройством, которое осуществляет передачу акустической энергии от преобразователя в обрабатываемую среду, а также создаёт заданные техническими условиями размеры излучающей поверхности и интенсивность ультразвукового поля. В качестве согласующих устройств используют, как правило, волноводные концентраторы акустические — расширяющиеся (обычно при У. о. жидкостей) или сужающиеся (обычно при У. о. твёрдых веществ), резонансные (настроенные на определённую частоту) или нерезонансные пластины. Согласующее устройство, кроме того, может одновременно выполнять функции режущего или какого-либо др. инструмента (например, при сверлении, сварке, пайке). Иногда применяют преобразователи, работающие без согласующего устройства (например, кольцевые преобразователи, встроенные в трубопровод).
У. о. твёрдых веществ используется в основном для сварки металлов, пластмасс и синтетических тканей (см. Ультразвуковая сварка), при резании металлов, стекла, керамики, алмаза и т.п. (например, сверлении, точении, гравировании), а также при обработке металлов давлением (волочении, штамповке, прессовании и др.).
Резание на ультразвуковых станках обеспечивает высокую точность, позволяет получать не только прямые круглые отверстия, но и вырезы сложных сечений, криволинейные каналы. Ультразвук, подведённый к инструменту обычного металлорежущего станка (например, сверлу, резцу), интенсифицирует обработку и улучшает дробление стружки (см. Вибрационное резание). При обработке металлов давлением ультразвуковые колебания улучшают условия деформирования и снижают необходимые усилия. При ультразвуковом поверхностном упрочнении повышаются микротвёрдость и износостойкость, снижается шероховатость поверхности. Во всех этих процессах ультразвук обычно подводят с помощью волноводного концентратора к рабочим органам машин (например, к сверлу, валкам прокатного стана, штампу пресса, фильере).
У. о. в жидкостях (жидкостей) основана главным образом на возникновении кавитации. Некоторые эффекты кавитации (гидравлические удары при захлопывании пузырьков и микропотоки, возникающие в жидкости около пузырьков) используются при пайке и лужении, диспергировании, очистке деталей и т.д. Другие эффекты (разогрев паров внутри пузырька и их ионизация) используются для инициирования и ускорения химических реакций. Иногда для интенсификации У. о. процесс ведут при повышенном давлении.
При пайке и лужении металлов, например алюминия, титана, молибдена, ультразвук разрушает окисные плёнки на поверхности деталей и облегчает течение процесса. С использованием ультразвука можно лудить, а затем паять керамику, стекло и др. неметаллические материалы. Ультразвук подводят волноводным концентратором к припою, помещенному в ванну или нанесённому на поверхность детали.
Очистка ультразвуком поверхностей деталей от металлической пыли, стружки, нагаров, жировых и др. загрязнений обеспечивает более высокое, чем др. способы, качество — остаётся не более 0,5% загрязнений. Некоторые детали, имеющие сложную форму и труднодоступные места, можно очистить только при У. о. Очистку обычно осуществляют в ваннах со встроенными электроакустическими излучателями; в рабочую жидкость добавляют поверхностно-активные вещества. Для снятия заусенцев с деталей в жидкость вводят абразивные частицы, которые в несколько раз ускоряют обработку (см. Вибрационная обработка).
Дегазацию (освобождение от газов) жидкостей осуществляют при малой (обычно ниже порога кавитации) интенсивности ультразвука. Мелкие газовые пузырьки, взвешенные в жидкости, сближаются друг с другом, слипаются (см. Коагуляция) и всплывают на поверхность. Дегазации подвергают расплавы оптических стекол, жидкие алюминиевые сплавы (см. Газы в металлах) и др. жидкости. У. о. используют при обогащении (флотации) руд — газовые пузырьки оседают на поверхностях частичек минералов и всплывают вместе с ними.
У. о. оказывает благоприятное влияние на процесс кристаллизации расплавов металлов при литье, что существенно улучшает структуру слитка и его механические свойства.
Для образования эмульсий обычно используют ультразвуковые аппараты в виде свистков или сирен. Приготовление суспензий в основном ведут в аппаратах с магнитострикционными преобразователями, работающими при повышенном давлении (см. Диспергирование).
Образование аэрозолей происходит при У. о. жидкости в тонком слое с помощью волноводного концентратора, который представляет собой распылительную насадку.
При У. о. хорошо деполимеризуются в растворах высокомолекулярные соединения. Это свойство используется, например, при синтезе различных блок- и привитых сополимеров, для получения из природных полимеров ценных низкомолекулярных веществ (см. Механохимия полимеров).
У. о. ускоряет многие массообменные процессы (растворение, экстрагирование, пропитку пористых тел и т.п.), ход которых ограничивается скоростью диффузии. Действие высоких температур внутри кавитационных пузырьков, уменьшение толщины пограничного слоя и его турбулизация интенсифицируют также протекающие совместно химические и массообменные процессы (например, хемосорбцию).
У. о. в газах (газов) вызывает коагуляцию аэрозолей и пыли (укрупнение и осаждение взвешенных в газах мелких частиц) и применяется, например, в акустическом пылеуловителе.
При возбуждении ультразвука в нагретом газе (сушильном агенте) интенсифицируется сушка пористых тел — ускоряется испарение со свободной поверхности жидкости, в капиллярах возникают акустические течения и т.п. Ультразвуковая сушка обычно применяется совместно с др. видами сушки, например инфракрасной, высокочастотной; в качестве источников ультразвука используют сирены.
У. о. — один из наиболее обширных разделов электрофизических и электрохимических методов обработки. Дальнейшее её развитие в основном связано с увеличением мощностей и рабочих объёмов ультразвуковых аппаратов, а также с детальным изучением физических и физико-химических процессов, протекающих в ультразвуковом поле. Расширяется область практического использования У. о., например в пищевой промышленности для осветления вин и ликёров; в фармацевтической— для стерилизации и приготовления различных препаратов и т.д.
Лит.: Физика и техника мощного ультразвука, [кн. 3], М., 1970; Ультразвуковая технология, под ред. Б. А. Аграната, М., 1974; Хорбенко И. Г., Ультразвук в машиностроении, М., 1974.
С. Л. Пешковский.