Примеры статей
Конформное отображение
Конформное отображение, конформное преобразование (математическое), отображение одной фигуры (области) на другую, при котором две любые кривые, пересекающиеся под некоторым углом во внутренней точке…
Картографические проекции
Картографические проекции, отображения всей поверхности земного эллипсоида или какую-либо её части на плоскость, получаемые в основном с целью построения карты. Масштаб. К. п. строятся в определённом…
Стереографическая проекция
Стереографическая проекция, соответствие между точками сферы и плоскости, получаемое следующим образом: из некоторой точки С на сфере (центра С. п.) другие точки сферы проектируются лучами на плоскость, перпендикулярную радиусу сферы ОС и не проходящую через С (см. рис.; обычно эту плоскость проводят или через центр О сферы, или через точку С' — конец диаметра сферы СС'). При этом каждая точка М сферы, отличная от С, перейдёт в некоторую точку М' плоскости; такое соответствие (после исключения из сферы самого центра проекции С, которому никакая точка плоскости не соответствует) будет взаимно однозначным. Основные свойства С. п.: 1) окружностям на сфере соответствуют окружности же на плоскости (на рис. окружности Г соответствует окружность Г'), причём окружностям, проходящим через центр С. п., соответствуют на плоскости прямые линии (окружности бесконечно большого радиуса; на рис. у и у')', 2) соответствие, устанавливаемое С. п., является конформным, т. е. сохраняет углы (см. Конформное отображение), например, угол LMN на сфере равен углу L'M'N' на плоскости.
С. п. — перспективная картографическая проекция. Часто применяется в картографии, т.к. для территории округлой формы из всех равноугольных проекций даёт наименьшее колебание масштаба. Используется также в астрономии, кристаллографии и др.