Примеры статей
Отношение (философ.)
Отношение, философская категория, выражающая характер расположения элементов определённой системы и их взаимозависимости; эмоционально-волевая установка личности на что-либо, т. е. выражение её…
Равенство (математич.)
Равенство, отношение взаимной заменимости (подстановочности) объектов, которые именно в силу их взаимной заменимости считают равными. Такое понимание Р. восходит к Г. В. Лейбницу. Взаимозаменимость…
Тождество
Тождество, основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем. В математике Т. - это уравнение, которое…
Эквивалентность
Эквивалентность, наименование отношений типа равенства, т. е. рефлексивных (см. Рефлексивность), симметричных (см. Симметричность) и транзитивных (см. Транзитивность) бинарных отношений. Например…
Подобие
Подобие, геометрическое понятие, характеризующее наличие одинаковой формы у геометрических фигур, независимо от их размеров. Две фигуры F1 и F2 называются подобными, если между их точками можно…
Симметричность
Симметричность в математике и логике, свойство бинарных (двуместных, двучленных) отношений, выражающее независимость выполнимости данного отношения для какой-либо пары объектов от порядка, в котором…
Транзитивность
Транзитивность (от лат. transitivus - переходный), одно из свойств логического отношения величин. Отношение а * b называется транзитивным, если из а * b и b * c вытекает, что а * c. Например…
Рефлексивность
Рефлексивность, свойство бинарных (двуместных, двучленных) отношений, выражающее выполнимость их для пар объектов с совпадающими членами (так сказать, между объектом и его "зеркальным отражением"): отношение R называется рефлексивным, если для любого объекта х из области его определения выполняется xRx. Типичные и наиболее важные примеры рефлексивных отношений: отношения типа равенства (тождества, эквивалентности, подобия и т.п.: любой предмет равен самому себе) и отношения нестрогого порядка (любой предмет не меньше и не больше самого себя). Интуитивные представления о "равенстве" (эквивалентности, подобии и т.п.), очевидным образом наделяющие его свойствами симметричности и транзитивности, "вынуждают" и свойство Р., поскольку последнее свойство следует из первых двух. Поэтому многие употребительные в математике отношения, по определению Р. не обладающие, оказывается естественным доопределить таким образом, чтобы они становились рефлексивными, например, считать, что каждая прямая или плоскость параллельна самой себе, и т.п.