Примеры статей
Макромолекула
Макромолекула, буквально - большая молекула, молекула полимера; построена по принципу повторения идентичных (у М. гомополимера) или различных (у М. сополимера) структурных единиц - мономерных (…
Биополимеры
Биополимеры, высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки…
Белки (протеины)
Белки, протеины, высокомолекулярные природные органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Именно Б. (ферменты и др.)…
Нуклеиновые кислоты
Нуклеиновые кислоты, полинуклеотиды, важнейшие биологически активные биополимеры, имеющие универсальное распространение в живой природе. Содержатся в каждой клетке всех организмов. Н. к. были открыты…
Смолы природные
Смолы природные, смолы натуральные, твёрдые вещества различной прозрачности и окраски (от бесцветных до тёмно-коричневых), содержащиеся в смолоносных растениях. С. п. извлекают из жидкостей (живицы и…
Полиэтилен
Полиэтилен [-CH2-CH2-] n, термопластичный полимер белого цвета. В промышленности его получают полимеризацией этилена при высоком давлении (П. низкой плотности) и низком или среднем давлении (П…
Полипропилен
Полипропилен, термопластичный полимер пропилена, [-CH2-CH (CH3)-] n; бесцветное кристаллическое вещество изотактической структуры, молекулярная масса 300-700 тыс., максимальная степень кристалличности…
Каучук натуральный
Каучук натуральный, полимер растительного происхождения, вулканизацией которого получают резину. К. н. относится к группе эластомеров - высокомолекулярных соединений, обладающих способностью к большим…
Амилопектин
Амилопектин (от греч. amylon - крахмал, pektes - сбитый, сплочённый), один из основных полисахаридов крахмала, состоящий из разветвленных цепочек молекул глюкозы, соединённых связями как между 1-м и 4…
Эпоксидные смолы
Эпоксидные смолы, олигомерные продукты поликонденсации эпихлоргидрина с многоатомными фенолами, спиртами, полиаминами, многоосновными кислотами, а также продукты эпоксидирования (т. е. введения…
Поливинилхлорид
Поливинилхлорид, преимущественно линейный термопластичный полимер винилхлорида, формула [-CH2-CHCl-] n. Пластик белого цвета, молекулярная масса 6000-160 000, степень кристалличности 10-35%, плотность…
Поликапроамид
Поликапроамид, поли-e-капроамид, полиамид-6, [3NH (CH2)5CO-] n линейный полимер капролактама, алифатический полиамид. Белое рогоподобное вещество, без запаха, молекулярная масса 10000 - 35 000…
Целлюлоза
Целлюлоза (франц. cellulose, от лат. cellula, буквально - комнатка, клетушка, здесь - клетка), клетчатка, один из самых распространённых природных полимеров (полисахарид); главная составная часть…
Стереорегулярные полимеры
Стереорегулярные полимеры, полимеры, линейные молекулы которых состоят из звеньев, имеющих либо одинаковые, либо разные, но чередующиеся в соответствии с некоторой закономерностью пространственные…
Сополимеры
Сополимеры, полимеры, макромолекулы которых содержат мономерные звенья нескольких типов. В регулярных С. различающиеся звенья распределяются в определённой периодичности. Простейшие примеры - С…
Полиметилметакрилат
Полиметилметакрилат, ,линейный термопластичный полимер метилметакрилата. Основной технический продукт известен как стекло органическое. П. (молекулярная масса до 2=106) исключительно прозрачен…
Политетрафторэтилен
Политетрафторэтилен, продукт полимеризации тетрафторэтилена общей формулы [-CF2-CF2-] n; подробнее см. в ст. Фторопласты…
Полиэтилентерефталат
Полиэтилентерефталат, сложный полиэфир, получаемый поликонденсацией терефталевой кислоты (или её диметилового эфира) с этиленгликолем. П. - твёрдое вещество белого цвета без запаха, молекулярная масса…
Поликарбонаты
Поликарбонаты, полиэфиры угольной кислоты и диоксисоединений общей формулы В зависимости от природы А и А' П. могут быть алифатическими, жирноароматическими и ароматическими. Практическое значение…
Полиамиды
Полиамиды, полимеры, содержащие амидные группировки -СО-NH- в основной цепи макромолекулы, связанные с алифатическими или ароматическими радикалами (соответственно алифатические или ароматические П.)…
Мочевино-формальдегидные смолы
Мочевино-формальдегидные смолы, продукты взаимодействия мочевины с формальдегидом, способные в ходе дальнейших реакций превращаться в сшитые полимеры. Взаимодействие мочевины с формальдегидом…
Кремнийорганические полимеры
Кремнийорганические полимеры, высокомолекулярные соединения, содержащие атомы кремния, углерода и др. элементов в элементарном звене макромолекулы. В зависимости от химического строения основной цепи…
Элементоорганические полимеры
Элементоорганические полимеры, высокомолекулярные элементоорганические соединения. По составу главной и боковых цепей макромолекул Э. п. делят на 3 группы: 1) с неорганическими главными цепями…
Неорганические полимеры
Неорганические полимеры, полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы. Боковые (обрамляющие) группы - обычно тоже неорганические; однако полимеры с…
Полимеров ориентированное состояние
Полимеров ориентированное состояние, состояние тел из линейных полимеров, в котором длинные цепные молекулы, составляющие эти тела, имеют преимущественное расположение своих осей вдоль некоторых…
Высокоэластическое состояние
Высокоэластическое состояние, одно из трёх физических состояний аморфных полимеров (см. Аморфное состояние). Оно проявляется в интервале температур между температурами стеклования и текучести у…
Растворы полимеров
Растворы полимеров, термодинамически устойчивые однородные молекулярно-дисперсные смеси полимеров и низкомолекулярных жидкостей. В разбавленных Р. п. макромолекулы отделены друг от друга, и изучение…
Набухание
Набухание, увеличение объёма твёрдого тела вследствие поглощения им из окружающей среды жидкости или пара. Способность к Н. - характерная особенность тел, образованных высокомолекулярными веществами (…
Надмолекулярная структура
Надмолекулярная структура полимеров, физическая структура полимерных тел, обусловленная различными видами упорядочения макромолекул. У полимеров в аморфном состоянии существует ближний порядок в…
Полистирол
Полистирол, линейный полимер стирола, [-CH2-CH (C6H5)-] n; прозрачное стеклообразное вещество, молекулярная масса 30-500 тыс., плотность 1,06 г/см3 (20 °С), температура стеклования 93 °С. П. - дешёвый…
Вулканизация
Вулканизация, технологический процесс резинового производства, при котором пластичный "сырой" каучук превращается в резину. При В. повышаются прочностные характеристики каучука, его твёрдость…
Дубление
Дубление, один из основных процессов при производстве кожи и меха. При Д. между белком (коллагеном) дермы (в кожевенном производстве) и волоса (в производстве меха) и молекулами дубящего вещества…
Деструкция полимеров
Деструкция полимеров, разрушение макромолекул под действием тепла, кислорода, влаги, света, проникающей радиации, механических напряжений, биологических факторов (например, при воздействии…
Поливинилацетат
Поливинилацетат, полимер винилацетата, [-CH2-CH (OCOCH3)-] n Твёрдое, бесцветное, нетоксичное вещество, молекулярная масса от 10 000 до 1 500 000 (в зависимости от условий получения); растворим во…
Поливиниловый спирт
Поливиниловый спирт, твёрдый полимер белого цвета формулы [-CH2-CH (OH)-] n (степень полимеризации n может достигать 5000): содержит до 68% кристаллической фазы в виде микрокристаллических образований…
Молекулярная масса
Молекулярная масса, молекулярный вес, значение массы молекулы, выраженное в атомных единицах массы. Практически М. м. равна сумме масс всех атомов, входящих в состав молекулы; умножение М. м. на…
Биосинтез
Биосинтез (от био... и синтез),образование органических веществ из более простых соединений, протекающее в живых организмах или вне их под действием биокатализаторов - ферментов. Б. - часть процесса…
Полимеризация
Полимеризация, процесс получения высокомолекулярных веществ, при котором молекула полимера (макромолекула) образуется путём последовательного присоединения молекул низкомолекулярного вещества (…
Поликонденсация
Поликонденсация, процесс получения полимеров из би- или полифункциональных соединений (мономеров), сопровождающийся выделением побочного низкомолекулярного вещества (воды, спирта, галогеноводорода и…
Пластические массы
Пластические массы, пластмассы, пластики, материалы, содержащие в своём составе полимер, который в период формования изделий находится в вязкотекучем или высокоэластичном состоянии, а при эксплуатации…
Резина (продукт вулканизации каучука)
Резина (от лат. resina - смола), вулканизат, продукт вулканизации каучука (см. Каучук натуральный, Каучуки синтетические). Техническая Р. - композиционный материал, который может содержать до 15-20…
Волокна текстильные
Волокна текстильные натуральные, протяжённые гибкие и прочные тела с очень малыми поперечными размерами, ограниченной длиной, пригодные для изготовления пряжи и текстильных изделий. В. т., не…
Волокна химические
Волокна химические, волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья В. х. подразделяются на синтетические (из синтетических полимеров) и…
Лаки (химич.)
Лаки (от нем. Lack; первоисточник - санскр. лакша), растворы плёнкообразующих веществ в органических растворителях, которые после нанесения тонким слоем на металлическую, деревянную или др…
Краски (лакокрасочные материалы)
Краски, лакокрасочные материалы, в состав которых входят плёнкообразующие вещества (связующие) и тонкодисперсные неорганические или органические пигменты. Помимо этих основных компонентов, К. могут…
Клеи
Клеи, природные или синтетические вещества, применяемые для соединения различных материалов за счёт образования адгезионной связи клеевой плёнки с поверхностями склеиваемых материалов. Прочность…
Ионообменные смолы
Ионообменные смолы, синтетические высокомолекулярные (полимерные) органические иониты. В соответствии с общей классификацией ионитов И. с. делят на катионообменные (поликислоты), анионообменные (…
Берцелиус Йенс Якоб
Берцелиус (Berzelius) Йенс Якоб (20.8.1779, Веверсунда, - 7.8.1848, Стокгольм), шведский химик и минералог. В 1802 получил степень доктора медицины в Упсальском университете, профессор университета в…
Поливинилиденхлорид
Поливинилиденхлорид, [-CH2-CCl-] n, линейный термопластичный полимер винилиденхлорида. Пластик белого цвета, молекулярная масса до 100 000, степень кристалличности до 50%, плотность 1,875 г/см3 (30 °C…
Бутлеров Александр Михайлович
Бутлеров Александр Михайлович [3(15).9.1828, Чистополь, ныне Татарской АССР, - 5(17).8.1886, деревня Бутлеровка, ныне Алексеевского района Татарской АССР], русский химик, создатель теории химического…
Бушарда Гюстав
Бушарда (Bouchardat) Гюстав (4.6. 1842, Париж, - 22.11.1918, там же), французский химик, профессор минералогии в Парижской фармацевтической школе. Основные работы по сахарам и терпенам. Выделив из…
Тилден Уильям Огастес
Тилден (Tilden) Уильям Огастес (15.8. 1842, Лондон, - 11.12.1926, там же), английский химик, член Лондонского королевского общества (1880). Профессор химии в колледже в Бирмингеме (с 1880) и…
Кондаков Иван Лаврентьевич
Кондаков Иван Лаврентьевич [26.9(8.10).1857, Вилюйск, - 14.10.1931, Эльва, близ Тарту], русский химик-органик. Ученик А. М. Бутлерова. В 1884 окончил Петербургский университет. В 1888-95 преподавал…
Лебедев Сергей Васильевич
Лебедев Сергей Васильевич [13(25).7.1874, Люблин, ныне в ПНР, - 2.5.1934, Ленинград], советский химик, академик АН СССР (1932; член-корреспондент 1928). Ученик А. Е. Фаворского. Гимназическое…
Штаудингер Герман
Штаудингер (Staudinger) Герман (23.3.1881, Вормс, - 8.9.1965, Фрейбург), немецкий химик (ФРГ). Обучался в университетах Галле и Мюнхена, а также в Высшей технической школе в Дармштадте. Профессор…
Карозерс Уоллес Хьюм
Карозерс (Carothers) Уоллес Хьюм [27.4.1896, Берлингтон, - 29.4.1937, Уилмингтон], американский учёный в области химии и технологии полимеров. Член Национальной академии наук США (1936). В 1921…
Полимеры
Полимеры (от греч. polymeres — состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
Классификация. По происхождению П. делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные П., например каучук натуральный); цепи с разветвлением (разветвленные П., например амилопектин); трёхмерной сетки (сшитые П., например отверждённые эпоксидные смолы). П., молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, П. называются стереорегулярными (см. Стереорегулярные полимеры).
П., макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).
П., в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи П. делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных П. наиболее распространены карбоцепные П., главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных П. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. П., макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу П. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).
Свойства и важнейшие характеристики. Линейные П. обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки (см. Полимеров ориентированное состояние); способность к большим, длительно развивающимся обратимым деформациям (см. Высокоэластическое состояние); способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые П. нерастворимы, неплавки и неспособны к высокоэластическим деформациям.
П. могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических П. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) П. менее выражены, чем в кристаллических.
Незакристаллизованные П. могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. П. с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства П. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С — эластичный материал, который при температуре — 60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 °С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 °С. Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.
П. могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп П. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта. Скорость реакций П. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу П. Наиболее явно это проявляется в случае сшитых П. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства П., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный П. из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1—2 поперечные связи.
Важнейшие характеристики П. — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства П. существенно зависят от этих характеристик.
Получение. Природные П. образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические П. получают полимеризацией и поликонденсацией. Карбоцепные П. обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные П. получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С º N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).
Применение. Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из П. применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.
Историческая справка. Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о П. "Истинные" синтетические полимеры к тому времени ещё не были известны.
Ряд П. был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию П. (до сих пор П. часто называли "смолами"). Первые упоминания о синтетических П. относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).
Химия П. возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о П. получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.
С начала 20-х гг. 20 в. развиваются также теоретические представления о строении П. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические П., сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория "малых блоков"). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать П. как качественно новый объект исследования химии и физики.
Лит.: Энциклопедия полимеров, т. 1—2, М., 1972—74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л., Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В., Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л., Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж., Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А., физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч., физическая химия полимеров, пер. с англ., М., 1965.
В. А. Кабанов.