Примеры статей
Ляпунов Александр Михайлович
Ляпунов Александр Михайлович [25.5(6.6).1857, Ярославль, - 3.11.1918, Одесса], русский математик и механик, академик Петербургской АН (1901; член-корреспондент 1900). Ученик П. Л. Чебышева. В 1880…
Чебышев Пафнутий Львович
Чебышев (произносится Чебышёв) Пафнутий Львович [14(26).5.1821, с. Окатово Калужской губернии, ныне Калужской области, - 26.11(8.12).1894, Петербург], русский математик и механик; адъюнкт (1853), с…
Марков Андрей Андреевич (русский математик)
Марков Андрей Андреевич [2(14).6.1856, Рязань, - 20.7.1922, Петроград], русский математик, специалист по теории чисел, теории вероятностей и математическому анализу. С 1886 адъюнкт Петербургской АН, с…
Предельные теоремы
Предельные теоремы теории вероятностей, общее название ряда теорем вероятностей теории, указывающих условия возникновения тех или иных закономерностей в результате действия большого числа случайных…
Ляпунова теорема
Ляпунова теорема в теории вероятностей, теорема, устанавливающая некоторые весьма общие достаточные условия для сходимости распределения сумм независимых случайных величин к нормальному закону. Сформулирована и доказана А. М. Ляпуновым в 1901. Л. т. завершает исследования П. Л. Чебышева, А. А. Маркова (старшего) и самого А. М. Ляпунова в этом основном для всей теории вероятностей направлении. Точная формулировка Л. т. такова: пусть независимые случайные величины Xi,..., Xn, ... имеют конечные математические ожидания EXk, дисперсии DXk и при d > 0 абсолютные моменты и пусть — дисперсия суммы Xi,..., Xn. Утверждается, что, если при некотором d>0
(условие Ляпунова), то вероятность неравенства
стремится при n ® ¥ к пределу
равномерно относительно всех значений x1 и x2. Ляпунов дал также оценку скорости сходимости в Л. т. В дальнейшем были установлены условия, расширяющие условие Ляпунова и являющиеся не только достаточными, но в некотором смысле необходимыми. См. Предельные теоремы теории вероятностей.
Лит.: Ляпунов А. М., Новая форма теоремы о пределе вероятности, Собрание сочинений, т. 1, М., 1954, с. 157; Бернштейн С. Н., Теория вероятностей, 4 изд., М. — Л., 1946, с. 275.
А. В. Прохоров.