Примеры статей
Инерциальная система отсчёта
Инерциальная система отсчёта, система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в…
Лоренц Хендрик Антон
Лоренц, Лорентц (Lorentz) Хендрик Антон (18.7.1853, Арнем, - 4.2.1928, Харлем), нидерландский физик, создатель электронной теории. Учился в Лейденском университете (1870-72), в 1878-1923 профессор…
Лоренца - Максвелла уравнения
Лоренца - Максвелла уравнения, Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические электромагнитные поля, создаваемые отдельными заряженными…
Эйнштейн Альберт
Эйнштейн (Einstein) Альберт (14.3.1879, Ульм, Германия, - 18.4.1955, Принстон, США), физик, создатель относительности теории и один из создателей квантовой теории и статистической физики. С 14 лет…
Галилея принцип относительности
Галилея принцип относительности, принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы. Отсюда…
Относительности теория
Относительности теория, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности, устанавливаемые О. т., являются общими для всех физических процессов…
Лоренца преобразования
Лоренца преобразования, в специальной теории относительности — преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчёта к другой. Получены в 1904 Х. А. Лоренцом как преобразования, по отношению к которым уравнения классической микроскопической электродинамики (Лоренца — Максвелла уравнения) сохраняют свой вид. В 1905 А. Эйнштейн вывел их, исходя из двух постулатов, составивших основу специальной теории относительности: равноправия всех инерциальных систем отсчёта и независимости скорости распространения света в вакууме от движения источника света.
Рассмотрим частный случай двух инерциальных систем отсчёта å и å’ с осями х и x’, лежащими на одной прямой, и соответственно параллельными другими осями (у и y’, z и z’). Если система å’ движется относительно å с постоянной скоростью u в направлении оси х, то Л. п. при переходе от å к å’ имеют вид:
,
где с — скорость света в вакууме (штрихованные координаты относятся к системе å’, нештрихованные — к å).
Л. п. приводят к ряду важных следствий, в том числе к зависимости линейных размеров тел и промежутков времени от выбранной системы отсчёта, к закону сложения скоростей в теории относительности и др. При скоростях движения, малых по сравнению со скоростью света (u<<c), Л. п. переходят в преобразования Галилея (см. Галилея принцип относительности), справедливые в классической механике Ньютона.
Подробнее см. Относительности теория; см. также литературу при этой статье.
Г. А. Зисман.