Примеры статей
Молния
Молния, гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим её громом. Электрическая природа М. была раскрыта в исследованиях американского…
Дуговой разряд
Дуговой разряд, один из типов стационарного электрического разряда в газах. Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808-09 Г. Дэви…
Тлеющий разряд
Тлеющий разряд, один из видов стационарного самостоятельного электрического разряда в газах. Происходит при низкой температуре катода, отличается сравнительно малой плотностью тока на катоде и большим…
Стримеры
Стримеры (англ., единственное число streamer, от stream - течь, проноситься), узкие светящиеся каналы, образующиеся внутри газа в электрическом поле при давлениях, близких к атмосферному и более…
Ударная волна
Ударная волна, скачок уплотнения, распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и скорости вещества. У. в…
Лихтенберга фигуры
Лихтенберга фигуры, картины распределения искровых каналов, стелющихся на поверхности твёрдого диэлектрика при т. н. скользящем искровом разряде. Впервые наблюдались Г. К. Лихтенбергом в 1777. В…
Кистевой разряд
Кистевой разряд, форма электрического разряда в газах. Возникает в случаях, когда одним из электродов служит тонкое остриё, формирующее сильно неоднородное электрическое поле. По характеру…
Электроискровая обработка
Электроискровая обработка, разновидность электроэрозионных методов обработки. Основана на специфическом воздействии искрового разряда на материал. Позволяет получать изделия с высокой точностью и…
Электрический разряд в газах
Электрический разряд в газах, прохождение электрического тока через газовую среду под действием электрического поля, сопровождающееся изменением состояния газа. Многообразие условий, определяющих…
Искровой разряд
Искровой разряд, искра, одна из форм электрического разряда в газах; возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом — "треском" искры. В природных условиях И. р. наиболее часто наблюдается в виде молнии. И. р. в собственном смысле этого термина происходит, если мощность питающего его источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда.В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько мксек до нескольких сотен мксек) падает ниже напряжения погасания И. р., что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания И. р. и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для И. р., но они являются лишь переходным процессом, ведущим к установлению разряда другого типа — чаще всего дугового.
И. р. представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок — искровых каналов. Эти каналы заполнены плазмой, в состав которой в мощном И. р. входят не только ионы исходного газа, но и ионы вещества электродов, интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения И. р.) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определённых условиях образуются стримеры — тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Стримеры, удлиняясь, перекрывают разрядный промежуток и соединяют электроды непрерывными проводящими нитями. Происходящее затем превращение стримеров в искровые каналы сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как "треск" искры (в случае молнии — гром).
Величины, характеризующие И. р. (напряжение зажигания, напряжение погасания, максимальная сила тока, длительность), могут меняться в широких пределах в зависимости от параметров разрядной цепи, величины разрядного промежутка, геометрии электродов, давления газа и т. д. Напряжение зажигания И. р., как правило, достаточно велико. Градиент напряжения в искре понижается от нескольких десятков кв/см в момент пробоя до ~100 в/см спустя несколько микросекунд. Максимальная сила тока в мощном И. р. может достигать значений порядка нескольких сотен ка.
Особый вид И. р. — скользящий И. р., возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами. Области скользящего И. р., в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика (см. Лихтенберга фигуры). Процессы, близкие к происходящим при И. р., свойственны также кистевому разряду.
И. р. нашёл разнообразные применения в технике. С его помощью инициируют взрывы и процессы горения, измеряют высокие напряжения; его используют в спектроскопическом анализе, в переключателях электрических цепей, для высокоточной обработки металлов (см. Электроискровая обработка) и т. п.
Лит. см. при ст. Электрический разряд в газах.