Примеры статей
Изо...
Изо... (от греч. isos - равный, одинаковый, подобный), часть сложных слов, обозначающая равенство, подобие по форме или назначению (например, изолинии, изомерия, изотопы, изоморфизм)…
Атом
Атом (от греч. atomos - неделимый), частица вещества микроскопических размеров и очень малой массы (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойств. Каждому…
Протон
Протон (от греч. protos - первый; символ р), стабильная элементарная частица, ядро атома водорода. П. имеет массу mp = (1,6726485 = 0,0000086)=10-24г (mp " 1836 me " 938,3 Мэв/с2 где me - масса…
Нейтрон
Нейтрон (англ. neutron, от лат. neuter - ни тот, ни другой; символ n), нейтральная (не обладающая электрическим зарядом) элементарная частица со спином 1/2 (в единицах постоянной Планка ) и массой…
Спин
Спин (от англ. spin - вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении…
Квадрупольный момент ядра
Квалрупольный момент ядра, величина, характеризующая отклонение распределения электрического заряда в атомном ядре от сферически симметричного (см. Ядро атомное). К. м. я. имеет размерность площади и…
Ядро атомное
Ядро атомное, центральная массивная часть атома, вокруг которой по квантовым орбитам обращаются электроны. Масса Я. а. примерно в 4-103 раз больше массы всех входящих в состав атома электронов…
Атомные единицы массы
Атомные единицы массы, единицы измерения массы атомов, молекул и элементарных частиц. Для измерения массы атомов и молекул до 1961 в химии применялась А. е. м., определявшаяся как 1/16 атомной массы…
Уран (хим. элемент)
Уран (лат. Uranium), U, радиоактивный химический элемент III группы периодической системы Менделеева, относится к семейству актиноидов, атомный номер 92, атомная масса 238,029; металл. Природный У…
Торий (хим. элемент)
Торий (лат. Thorium), Th, радиоактивный химический элемент, первый член семейства актиноидов, входящих в III группу периодической системы Менделеева; атомный номер 90, атомная масса 232,038;…
Содди Фредерик
Содди (Soddy) Фредерик (2.9.1877, Истборн, - 22.9.1956, Брайтон), английский радиохимик, член Лондонского королевского общества (1910). В 1896 окончил Оксфордский университет. В 1900-02 работал под…
Масс-спектрометры
Масс-спектрометры, приборы для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанные на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. В…
Астон Фрэнсис Уильям
Астон (Aston) Фрэнсис Уильям (1.9.1877, Харборн, - 20.11.1945, Кембридж), английский физик, член Лондонского королевского общества (1921), член-корреспондент АН СССР (1924). Окончил Бирмингемский и…
Ядерные реакции
Ядерные реакции, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Для осуществления Я. р. необходимо сближение частиц (двух ядер, ядра и нуклона и т…
Трансурановые элементы
Трансурановые элементы,химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером Z 3 93. Известно 14 Т. э. Из-за относительно высокой…
Ядро атомное
Ядро атомное, центральная массивная часть атома, вокруг которой по квантовым орбитам обращаются электроны. Масса Я. а. примерно в 4-103 раз больше массы всех входящих в состав атома электронов…
Бета-распад
Бета-распад, b-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в…
Позитрон
Позитрон [от лат. posi (tivus) - положительный и (элек)трон] (символ е+), элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Массы (me) и спины (J) П. и…
Альфа-распад
Альфа-распад (a-распад), испускание альфа-частиц атомными ядрами в процессе самопроизвольного (спонтанного) радиоактивного распада (см. Радиоактивность). При А.-р. из радиоактивного ("материнского")…
Ядерные реакции
Ядерные реакции, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Для осуществления Я. р. необходимо сближение частиц (двух ядер, ядра и нуклона и т…
Изотопов разделение
Изотопов разделение, выделение чистых изотопов из смеси изотопов данного элемента или обогащение смеси отдельными изотопами. И. р. - важная проблема, имеющая большое научное и практическое значение. С…
Изотопные методы
Изотопные методы в геологии, методы изучения геол. процессов, основанные на исследовании содержания и соотношений радиоактивных, радиогенных и стабильных изотопов отдельных химич. элементов в горных…
Изотопный обмен
Изотопный обмен, химический процесс, заключающийся в перераспределении изотопов какого-либо элемента между реагирующими веществами. При И. о. происходит замещение одного изотопа какого-либо элемента…
Геохронология
Геохронология (от гео. и хронология), геологическое летосчисление, учение о хронологической последовательности формирования и возрасте горных пород, слагающих земную кору. Различают относительную и…
Масс-спектроскопия
Масс-спектроскопия, масс-спектрометрия, масс-спектральный анализ, метод исследования вещества путём определения масс ионов этого вещества (чаще отношений масс ионов к их зарядам) и их количеств…
Радиоактивность
Радиоактивность (от лат. radio - излучаю, radius - луч и activus - действенный), самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно - изотоп…
Изотопные индикаторы
Изотопные индикаторы, вещества, имеющие отличный от природного изотопный состав и благодаря этому используемые в качестве метки при изучении самых разнообразных процессов. Роль изотопной метки…
Изотопы
Изотопы (от изо... и греч. tópos — место), разновидности одного химического элемента, занимающие одно место в периодической системе элементов Менделеева, но отличающиеся массами атомов. Химические свойства атомов, т. е. принадлежность атома к тому или иному химическому элементу, зависят от числа электронов и их расположения в электронной оболочке атома (см. Атом). Место химического элемента в периодической системе элементов определяется его порядковым номером Z, равным числу электронов в оболочке атома или, что то же самое, числу протонов, содержащихся в атомном ядре. Кроме протонов, в ядро атома входят нейтроны, масса каждого из которых приблизительно равна массе протона. Количество нейтронов N в ядре атома с данным Z может быть различным, но в определённых пределах. Например, в ядре атома гелия (Z = 2) может содержаться 1, 2, 4 или 6 нейтронов. Полное число протонов Z и нейтронов N в ядре (называется общим термином нуклоны) определяет массу ядра и по существу массу всего атома. Это число А = Z + N называется массовым числом атома. От соотношения чисел протонов и нейтронов в ядре зависят стабильность или нестабильность ядра, тип распада радиоактивного ядра, спин, магнитный дипольный момент, электрический квадрупольный момент ядра и некоторые другие его свойства (см. Ядро атомное). Таким образом, атомы с одинаковым Z, но с различным числом нейтронов N обладают идентичными химическими свойствами, но имеют различные массы и различные ядерные свойства. Эти разновидности атомов также называются И. Для обозначения любых разновидностей атомов, независимо от их принадлежности к одному элементу, применяют термин нуклиды.
Массовое число И. приводится сверху слева от химического символа элемента. Например, И. гелия обозначаются: 3He, 4He, 6He, 8He. Более развёрнутые обозначения: 12Не3, 22He4, 42Не6, 62He8, где нижний индекс указывает число протонов Z, верхний левый индекс — число нейтронов N, а верхний правый — массовое число. При обозначении И. без применения символа элемента массовое число А даётся после наименования элемента: гелий-3, гелий-4 и т. п.
Массы атомов М, выраженные в атомных единицах массы, лишь немного отличаются от целых чисел. Поэтому разность М — А всегда правильная дробь, по абсолютной величине меньше 1/2, и таким образом массовое число А есть ближайшее к массе атома М целое число. Знание массы атома определяет полную энергию E связи всех нуклонов в ядре. Эта энергия выражается соотношением E = DMc2, где с — скорость света в вакууме, DМ — разность между суммарной массой всех входящих в ядро нуклонов в свободном состоянии и массой ядра, которая равна массе нейтрального атома без массы всех электронов.
Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—07 выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий имеют те же химические свойства, что и торий, однако отличаются от последнего атомной массой и характеристиками радиоактивного распада. Более того, как было обнаружено позднее, все три элемента имеют одинаковые оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Ф. Содди, стали называть И.
После того как И. были обнаружены у тяжёлых радиоактивных элементов, начались поиски И. у стабильных элементов. В 1913 английский физик Дж. Томсон обнаружил И. у неона. Разработанный им метод парабол позволял определить отношение массы иона к его заряду по отклонению в параллельно направленных электрическом и магнитном полях тонкого пучка положительных ионов, получаемых в высоковольтном электрическом разряде (см. Масс-спектрометры). Наряду с атомами 20Ne Томсон наблюдал небольшую примесь более тяжёлых атомов. Однако убедительных доказательств того, что вторая компонента более тяжёлых атомов является И. неона, получено не было. Лишь с помощью первого масс-спектрографа, построенного в 1919 английским физиком Ф. Астоном, были получены надёжные доказательства существования двух И. 20Ne и 22Ne, относительное содержание (распространённость) которых в природе составляет приблизительно 91% и 9% . В дальнейшем был обнаружен изотоп 21Ne с распространённостью 0,26%, И. хлора, ртути и ряда других элементов. Примерно к 1940 изотопный анализ был осуществлен для всех существующих на Земле элементов. В результате этого были выявлены и идентифицированы практически все стабильные и долгоживущие радиоактивные И. природных элементов.
В 1934 И. Кюри и Ф. Жолио получили искусственным путём радиоактивные И. азота (13N), кремния (28Si) и фосфора (30P), отсутствующие в природе. Этими экспериментами они продемонстрировали возможность синтеза новых радиоактивных нуклидов. В последующие годы с помощью ядерных реакций под действием нейтронов и ускоренных заряженных частиц было синтезировано большое число радиоактивных И. известных элементов, а также получено около 20 новых элементов. Известно 276 стабильных И., принадлежащих 81 природному элементу, и около 1500 радиоактивных И. 105 природных и синтезированных элементов.
Анализ соотношений между числами нейтронов и протонов для различных И. одного и того же элемента показывает, что ядра стабильных И. и радиоактивных И., устойчивых по отношению к бета-распаду, содержат на каждый протон не менее одного нейтрона. Исключение из этого правила составляют лишь два нуклида — 1H и 3He. По мере перехода ко всё более тяжёлым ядрам отношение числа нейтронов к числу протонов в ядре растет и достигает 1,6 для урана и трансурановых элементов.
Элементы с нечётным Z имеют не более двух стабильных И. Как правило, число нейтронов N в таких ядрах чётное, и, следовательно, массовое число А — нечётное. Большинство элементов с чётным Z имеет несколько стабильных И., из которых не более двух с нечётным А. Наибольшее число И. (10) имеет олово, 9 И. — у ксенона, 8 — у кадмия и теллура. Многие элементы имеют 7 И.
Такие широкие вариации в числе стабильных И. у различных элементов обусловлены сложной зависимостью энергии связи ядра от числа протонов и нейтронов в ядре. По мере изменения числа нейтронов N в ядре с данным числом протонов Z энергия связи ядра и его устойчивость по отношению к различным типам распада меняются. При добавлении нейтронов ядро становится неустойчивым по отношению к испусканию электрона с превращением одного нейтрона в ядре в протон (см. Ядро атомное). Поэтому нейтронообогащённые И. всех элементов b— -активны (см. Бета-распад). Наоборот, при обеднении нейтронами ядро получает возможность или захватить электрон из оболочки атома, или испустить позитрон. При этом один протон превращается в нейтрон и оптимальное соотношение между числом протонов и нейтронов в ядре восстанавливается. Нейтронообеднённые И. всех элементов испытывают или электронный захват или позитронный распад. У тяжёлых ядер наблюдаются также альфа-распад и самопроизвольное (спонтанное) деление ядер. Получение нейтроноизбыточных И. элементов возможно несколькими способами. Один из них — реакция захвата нейтронов ядрами стабильных И. Другой — деление тяжёлых ядер под действием нейтронов или заряженных частиц, в результате которого из одного тяжёлого ядра с большим относительным содержанием нейтронов образуются два нейтронообогащённых ядра. Нейтронообогащённые И. лёгких элементов эффективно образуются в реакциях многонуклонного обмена при взаимодействии ускоренных тяжёлых ионов с веществом. Синтез нейтроно-дефицитных И. осуществляется в ядерных реакциях под действием ускоренных заряженных лёгких частиц или тяжёлых ионов.
Все стабильные И. на Земле возникли в результате ядерных процессов, протекавших в отдалённые времена, и их распространённость зависит от свойств ядер и от первоначальных условий, в которых происходили эти процессы. Изотопный состав природных элементов на Земле, как правило, постоянен. Это объясняется тем, что он не подвергается значительным изменениям в химических и физических процессах, протекающих на Земле. Однако небольшие колебания в относительной распространённости И. всё же наблюдаются для лёгких элементов, у которых различие в массах атомов И. относительно велико. Эти колебания обусловлены изменением изотопного состава элементов (фракционированием И.), происходящим в результате диффузии, изменения агрегатного состояния вещества, при некоторых химических реакциях и других процессах, непрерывно протекающих в атмосфере и земной коре (см. Изотопов разделение, Изотопные методы в геологии, Изотопный обмен). Изменение изотопного состава элементов, интенсивно мигрирующих в биосфере (Н, С, N, О, S), связано и с деятельностью живых организмов.
Для нуклидов, образующихся в результате радиоактивного распада, например для И. свинца, различное содержание И. в разных образцах обусловлено разным первоначальным содержанием их родоначальников (U или Th) и разным геологическим возрастом образцов (см. Геохронология, Масс-спектроскопия, Радиоактивность).
Единство образования тел Солнечной системы позволяет думать, что изотопный состав элементов земных образцов характерен для всей Солнечной системы в целом (при наличии известных колебаний). Метеоры и глубокие слои земной коры показывают примерно одинаковое отношение 16O/18O. Астрофизические исследования обнаруживают отклонения изотопного состава элементов, составляющих звёздное вещество и межзвёздную среду, от земного. Например, для углеродных R-звёзд отношение 12C/13C изменяется от 4—5 до земного значения.
Возможность примешивать к природным химическим элементам их радиоактивные И. позволяет следить за различными химическими и физическими процессами, в которых участвует данный элемент, с помощью детекторов радиоактивных излучений. Этот метод получил широкое применение в биологии, химии, медицине, а также в технике. Иногда примешивают стабильные И., присутствие которых обнаруживают в дальнейшем масс-спектральными методами (см. Изотопные индикаторы).
Важной проблемой является выделение отдельных И. из их природной или искусственно полученной смеси или обогащение этой смеси каким-либо И.
Лит.: Астон Ф. В., Масс-спектры и изотопы, пер. с англ., М., 1948; Кравцов В. А., Массы атомов и энергии связи ядер, М., 1965; Lederer С. М., Hollander J. М., Periman I., Table of isotopes, 6 ed., N. Y. — [a. o.], 1967.
Н. И. Тарантин.