Примеры статей
Равновесие химическое
Равновесие химическое, состояние системы, в которой обратимо протекает одна или несколько реакций химических,причём для каждой из них скорости прямой и обратной реакций равны, вследствие чего состав…
Метиловый спирт
Метиловый спирт, метанол, древесный спирт, CH3OH, бесцветная жидкость с запахом, подобным запаху этилового спирта; tкип 64,5 °С, плотность 0,7924 г/см3 (20 °С). С воздухом в объёмных концентрациях 6…
Жиров гидрогенизация
Жиров гидрогенизация, каталитическое присоединение водорода к сложным эфирам глицерина и ненасыщенных жирных кислот; метод гидрогенизации жиров предложен Норманом и С. А. Фокиным в 1902-03; впервые в…
Полиамидные волокна
Полиамидные волокна, синтетические волокна, формуемые из расплавов или растворов полиамидов. Обычно для производства П. в. используют линейные алифатические полиамиды с молекулярной массой от 15 000…
Очистка нефтепродуктов
Очистка нефтепродуктов, удаление из нефтепродуктов (дистиллятов и остатков от перегонки нефти) нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел. К таким…
Гидрогенизация деструктивная
Гидрогенизация деструктивная, переработка бедных водородом низкосортных топлив (каменных углей, сланцев, каменноугольной смолы, мазутов) с целью превращения их в обогащенные водородом топлива и масла…
Аммиак
Аммиак, NH3, простейшее химическое соединение азота с водородом. Один из важнейших продуктов химической промышленности; синтез А. из азота воздуха и водорода - основной метод получения т. н…
Риформинг
Риформинг (англ. reforming, от reform - переделывать, улучшать), промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высокооктановых бензинов и ароматических…
Ароматизация нефтепродуктов
Ароматизация нефтепродуктов, химическая переработка нефтяных продуктов с целью увеличения содержания в них ароматических углеводородов путём превращения углеводородов с открытой цепью в углеводороды…
Сабатье Поль
Сабатье (Sabatier) Поль (5.11.1854, Каркассонн, - 14.8.1941, Тулуза), французский химик, член Парижской АН (1913). В 1877 окончил Высший педагогический институт в Тулузе. В 1884-1930 профессор…
Зелинский Николай Дмитриевич
3елинский Николай Дмитриевич [25.1(6.2).1861, Тирасполь, - 31.7.1953, Москва], советский химик-органик, академик АН СССР (1929), один из основоположников учения об органическом катализе. Герой…
Лебедев Сергей Васильевич
Лебедев Сергей Васильевич [13(25).7.1874, Люблин, ныне в ПНР, - 2.5.1934, Ленинград], советский химик, академик АН СССР (1932; член-корреспондент 1928). Ученик А. Е. Фаворского. Гимназическое…
Габерландт Фридрих
Габерландт, Хаберландт (Haberlandt) Фридрих (21.2.1826, Братислава, - 1.5.1878, Вена), австрийский натуралист. Отец Г. Габерландта. Окончил с.-х. школу в Мошонмадьяроваре (1849); с 1851 адъюнкт, с…
Бергиус Фридрих
Бергиус (Bergius) Фридрих (11.10. 1884, близ Бреслау, - 31.3.1949, Буэнос-Айрес), немецкий химик-технолог. Б. разработал (1913) способ получения моторных жидких топлив путём насыщения водородом смеси…
Бертло Пьер Эжен Марселен
Бертло, Бертело (Berthelot) Пьер Эжен Марселен (25.10.1827, Париж, - 18.3.1907, там же), французский химик и общественный деятель. Профессор химии Высшей фармацевтической школы в Париже (1859) и…
Казанский Борис Александрович
Казанский Борис Александрович [р. 13 (25).4.1891, Одесса], советский химик-органик, академик АН СССР (1946; член-корреспондент 1943), Герой Социалистического Труда (1969). В 1918 окончил Московский…
Баландин Алексей Александрович
Баландин Алексей Александрович [8(20).12.1898, Ленинград, - 22.5.1967, Москва], советский химик, академик АН СССР (1946; член-корреспондент 1943). Член КПСС с 1949. В 1923 окончил Московский…
Гидрогенизация
Гидрогенизация (от лат. hydrogenium — водород), гидрирование, каталитическая реакция присоединения водорода к простым веществам (элементам) или химическим соединениям. Обратная реакция — отщепление водорода от химических соединений — называется дегидрогенизацией (дегидрированием). Г. и дегидрогенизация — важные методы каталитического синтеза различных органических веществ, основанные на реакциях окислительно-восстановительного типа, связанных подвижным равновесием (см. Равновесие химическое). Примером может служить обратимое каталитическое превращение этилового спирта в ацетальдегид:
Повышение температуры и понижение давления H2 способствуют образованию ацетальдегида, а понижение температуры и повышение давления H2 — образованию этилового спирта; такое влияние условий типично для всех реакций Г. и дегидрогенизации. Катализаторами Г. и дегидрогенизации являются многие металлы (Fe, Ni, Со, Pt, Pd, Os и др.), окислы (NiO, CoO, Cr2O3, MoO2 и др.), а также сульфиды (WS2, MoS2, CrnSm).
Г. и дегидрогенизация широко используются в промышленности. Например, синтез такого важного продукта, как метиловый спирт, служащий сырьём для многих химических производств и растворителем, осуществляют Г. окиси углерода (CO + 2H2 ® CH3OH) на окисных цинк-хромовых катализаторах при 300—400°С и давлении водорода 20—30 Мн/м2 (200—300 кгс/см2). При другом составе катализаторов этим методом можно получать и высшие спирты. Г. жиров лежит в основе производства маргарина (см. Жиров гидрогенизация). В связи с возникновением производства таких материалов, как капрон, найлон и пр. (см. Полиамидные волокна), метод Г. стал широко применяться для получения промежуточных продуктов — циклогексанола из фенола, циклогексана из бензола, гексаметилендиамина из динитрила адипиновой кислоты (на никелевых катализаторах) и циклогексиламина из анилина (на кобальтсодержащих катализаторах).
Для облагораживания топлив, получаемых из сернистых нефтей, большое значение имеет гидроочистка (см. Очистка нефти) — Г. на алюмо-кобальт-молибденовом или вольфрамо-никелевом катализаторах, приводящая к разрушению органических сернистых соединений и удалению серы в виде H2S. Другой процесс облагораживания нефтепродуктов — гидрогенизация деструктивная (на вольфрамсульфидных и некоторых др. катализаторах) — приводит к увеличению выхода светлых и лёгких продуктов при переработке нефти. При Г. CO на различных катализаторах можно получать бензин, твёрдые парафины или кислородсодержащие органические соединения. Синтез неорганического вещества аммиака взаимодействием азота и водорода под высоким давлением также относится к Г. и является примером Г. простого вещества.
Один из простейших примеров дегидрогенизации — дегидрирование спиртов. Значительное количество ацетальдегида производится дегидрогенизацией гидролизного (получаемого из древесины) этилового спирта. Дегидрогенизация углеводородов является одной из основных реакций, протекающих на смешанных катализаторах в сложном процессе риформинга, который приводит к существенному улучшению качеств моторных топлив; эта реакция позволяет получать также различные ароматические углеводороды из нафтеновых и парафиновых (см. также Ароматизация нефтепродуктов).
Широкое применение дегидрогенизация нашла в производстве мономеров для синтеза каучуков и смол. Так, парафиновые углеводороды бутан и изопентан дегидрируются при 500—600°С на катализаторах, содержащих окись хрома, соответственно в бутилены и изопентен (изоамилен), которые, в свою очередь, дегидрируются на сложных катализаторах в диолефины — бутадиен и изопрен. В производстве полимеров стирола и его производных большое значение приобрела дегидрогенизация алкилароматических углеводородов — этилбензола в стирол, изопропилбензола в метилстирол и т.п.
Начало широкого изучения Г. было положено в 1897—1900 научными школами П. Сабатье во Франции и Н. Д. Зелинского в России. Основные закономерности Г. смесей органических соединений установил С. В. Лебедев. В области практического применения Г. крупные успехи были достигнуты уже в 1-й четверти 20 в. Ф. Габером (синтез аммиака), Ф. Бергиусом (Г. угля) и Г. Патаром (Франция; синтез метанола). Дегидрогенизацию спиртов открыл в 1886 М. Бертло. В 1901 Сабатье наблюдал наряду с др. превращениями углеводородов и их дегидрогенизацию. В чистом виде дегидрогенизацию углеводородов впервые удалось осуществить Н. Д. Зелинскому, разработавшему ряд избирательно действующих катализаторов. Большой вклад в развитие теории и практики Г. и дегидрогенизации внесли Б. А. Казанский, А. А. Баландин и их научной школы.
Лит.: Лебедеве. В., Жизнь и труды, Л., 1938; Зелинский Н. Д., Собр. трудов, т. 3 — Катализ, М., 1955; Долгов Б. Н., Катализ в органической химии, 2 изд., Л., 1959; Баландин А. А., Мультиплетная теория катализа, ч. 1—2, М., 1963—64; Юкельсон И. И., Технология основного органического синтеза, М., 1968; Bond G. С., Catalysis by metals, L. — N. Y., 1962; Ридил Э., Развитие представлений в области катализа, пер. с англ., М., 1971, гл. 6 и 7.
А. М. Рубинштейн.