Примеры статей
Томсон Уильям
Томсон (Thomson), лорд Кельвин (Kelvin) Уильям (26.6.1824, Белфаст, - 17.12.1907, Ларгс, близ Глазго; похоронен в Лондоне), английский физик, один из основателей термодинамики и кинетической теории…
Первое начало термодинамики
Первое начало термодинамики, один из двух основных законов термодинамики, представляет собой закон сохранения энергии для систем, в которых существенное значение имеют тепловые процессы. П. н. т. было…
Круговой процесс
Круговой процесс (цикл) в термодинамике, процесс, при котором физическая система (например, пар), претерпев ряд изменений, возвращается в исходное состояние. Термодинамические параметры и…
Адиабатный процесс
Адиабатный процесс, процесс, происходящий в физической системе без теплообмена с окружающей средой. А. п. можно осуществить в системе, окруженной теплоизолирующей (адиабатной) оболочкой. Пример такого…
Идеальный газ
Идеальный газ, теоретическая модель газа, в которой пренебрегается взаимодействием частиц газа (средняя кинетическая энергия частиц много больше энергии их взаимодействия). Различают классический И. г…
Газы (агрегатное состояние вещества)
Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом), агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и…
Статистическая физика
Статистическая физика, раздел физики, задача которого - выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.)…
Третье начало термодинамики
Третье начало термодинамики, тепловой закон Нернста (Нернста теорема), закон термодинамики, согласно которому энтропияS любой системы стремится к конечному для неё пределу, не зависящему от давления…
Потенциалы термодинамические
Потенциалы термодинамические, определённые функции объёма (V), давления (р), температуры (Т), энтропии (S), числа частиц системы (N)и др. макроскопических параметров (xi), характеризующих состояние…
Тепловой эффект реакции
Тепловой эффект реакции, алгебраическая сумма теплоты, поглощённой при данной реакции химической, и совершенной внешней работы за вычетом работы против внешнего давления. Если при реакции теплота…
Теплоёмкость
Теплоёмкость, количество теплоты, поглощаемой телом при нагревании на 1 градус; точнее - отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому…
Потенциалы термодинамические
Потенциалы термодинамические, определённые функции объёма (V), давления (р), температуры (Т), энтропии (S), числа частиц системы (N)и др. макроскопических параметров (xi), характеризующих состояние…
Внутренняя энергия
Внутренняя энергия, энергия тела, зависящая только от его внутреннего состояния. Понятие В. э. объединяет все виды энергии тела, за исключением энергии его движения как целого и потенциальной энергии, которой тело может обладать, если оно находится в поле каких-нибудь сил (например, в поле сил тяготения).
Понятие В. э. ввёл У. Томсон (1851), определив изменение В. э. (DU) тела (физической системы) в каком-нибудь процессе как алгебраическую сумму количества теплоты Q которой система обменивается в ходе процесса с окружающей средой, и работы А, совершённой системой или произведённой над ней:
DU = Q - A (1)
Принято считать работу А положительной, если она производится системой над внешними телами, а количество теплоты Q положительным, если оно передаётся системе. Уравнение (1) выражает первое начало термодинамики — закон сохранения энергии в применении к процессам, в которых происходит передача теплоты.
Согласно закону сохранения энергии, В. э. является однозначной функцией состояния физической системы, т. е. однозначной функцией независимых переменных, определяющих это состояние, например, температуры Т и объёма V или давления р. Хотя каждая из величин (Q и A) зависит от характера процесса, переводящего систему из состояния с В. э. U1 в состояние с энергией U2, однозначность В. э. приводит к тому, что DU определяется лишь значениями В. э. в начальном и конечном состояниях: DU = U2 — U1. Для любого замкнутого процесса, возвращающего систему в первоначальное состояние (U2 = U1), изменение В. э. равно нулю и Q = А (см. Круговой процесс).
Изменение В. э. системы в адиабатном процессе (при отсутствии теплообмена с окружающей средой, т. е. при Q = 0) равно работе, производимой над системой или произведённой системой.
В случае простейшей физической системы — идеального газа — изменение В. э., как показывает кинетическая теория газов, сводится к изменению кинетической энергии молекул, определяемой температурой (см. Газы). Поэтому изменение В. э. идеального газа (или близких к нему по свойствам газов с малым межмолекулярным взаимодействием) определяется только изменением его температуры (закон Джоуля). В физических системах, частицы которых взаимодействуют между собой (реальные газы, жидкости, твёрдые тела), В. э. включает также энергию межмолекулярных и внутримолекулярных взаимодействий. В. э. таких систем зависит как от температуры, так и от давления (объёма).
Экспериментально можно определить только прирост или убыль В. э. в физическом процессе (за начало отсчёта можно взять, например, исходное состояние). Методы статистической физики позволяют, в принципе, теоретически рассчитать В. э. физической системы, но также лишь с точностью до постоянного слагаемого, зависящего от выбранного нуля отсчёта.
В области низких температур с приближением к абсолютному нулю (—273,16°С) В. э. конденсированных систем (жидких и твёрдых тел) приближается к определённому постоянному значению U 0, становясь независимой от температуры (см. Третье начало термодинамики). Значение U 0может быть принято за начало отсчёта В. э.
В. э. относится к числу основных термодинамических потенциалов (см. Потенциалы термодинамические). Изменение В. э. при постоянных объёме и температуре системы характеризует тепловой эффект реакции, а производная В. э. по температуре при постоянном объёме определяет теплоёмкость системы.
Лит. см. при ст. Потенциалы термодинамические.
А. А. Лопаткин.