Пример статьи на Сф
Сферическая тригонометрия
Сферическая тригонометрия, математическая дисциплина, изучающая зависимости между углами и сторонами сферических треугольников (см. Сферическая геометрия). Пусть А, В, С — углы и а, b, с — противолежащие им стороны сферического треугольника ABC (см. рис.). Углы и стороны сферического треугольника связаны следующими основными формулами С. т.:
(1)
cos а = cos b cos с + sin b sin с cos А, (2)
cos A = - cos B cos С + sin B sin С cos a, (21)
sin a cos B = cos b sin c - sin b cos с cos А, (3)
sin А cos b = cos B sin C + sin B cos С cos a; (31)
в этих формулах стороны а, b, с измеряются соответствующими центральными углами, длины этих сторон равны соответственно aR, bR, cR, где R — радиус сферы. Меняя обозначения углов (и сторон) по правилу круговой перестановки: А ® В ® С ® А (а ® b ® с ® а), можно написать другие формулы С. т., аналогичные указанным. Формулы С. т. позволяют по любым трём элементам сферического треугольника определить три остальные (решить треугольник).
Для прямоугольных сферических треугольников (А = 90°, а — гипотенуза, b, с — катеты) формулы С. т. упрощаются, например:
sin b = sin a sin В, (1')
cos a = cos b cos c, (2')
sin a cos B = cos b sin c. (3')
Для получения формул, связывающих элементы прямоугольного сферического треугольника, можно пользоваться следующим мнемоническим правилом (правилом Непера): если заменить катеты прямоугольного сферического треугольника их дополнениями и расположить элементы треугольника (исключая прямой угол А)по кругу в том порядке, в каком они находятся в треугольнике (то есть следующим образом: В, а, С, 90° - b, 90° - с), то косинус каждого элемента равен произведению синусов неприлежащих элементов, например,
cos а = sin (90° - с) sin (90° - b)
или, после преобразования,
cos а = cos b cos с (формула 2').
При решении задач удобны следующие формулы Деламбра, связывающие все шесть элементов сферического треугольника:
,
,
,
.
При решении многих задач сферической астрономии, в зависимости от требуемой точности, часто оказывается достаточным использование приближённых формул: для малых сферических треугольников (то есть таких, стороны которых малы по сравнению с радиусом сферы) можно пользоваться формулами плоской тригонометрии; для узких сферических треугольников (то есть таких, у которых одна сторона, например а, мала по сравнению с другими) применяют следующие формулы:
(1’’)
(3’’)
или более точные формулы:
(1’’’)
(3’’’)
С. т. возникла значительно раньше плоской тригонометрии. Свойства прямоугольных сферических треугольников, выражаемые формулами (1')—(3'), и различные случаи их решения были известны ещё греческим учёным Менелаю (1 в.) и Птолемею (2 в.). Решение косоугольных сферических треугольников греческие учёные сводили к решению прямоугольных. Азербайджанский учёный Насирэддин Туей (13 в.) систематически рассмотрел все случаи решения косоугольных сферических треугольников, впервые указав решение в двух труднейших случаях. Основные формулы косоугольных сферических треугольников были найдены арабским учёным Абу-ль-Вефа (10 в.) [формула (1)], немецким математиком И. Региомонтаном (середина 15 в.) [формулы типа (2)], французским математиком Ф. Виетом (2-я половина 16 в.) [формулы типа (21)] и Л. Эйлером (Россия, 18 в.) [формулы типа (3) и (31)]. Эйлер (1753 и 1779) дал всю систему формул С. т. Отдельные удобные для практики формулы С. т. были установлены шотландским математиком Дж. Непером (конец 16 — начало 17 вв.), английским математиком Г. Бригсом (конец 16 — начало 17 вв.), русским астрономом А. И. Лекселем (2-я половина 18 в.), французским астрономом Ж. Деламбром (конец 18 — начало 19 вв.) и др.
Лит. см. при ст. Сферическая геометрия.
Сферический треугольник
Сферический треугольник, геометрическая фигура, образованная дугами трёх больших кругов, соединяющих попарно три какие-нибудь точки на сфере. О свойствах С. т. и соотношениях между его элементами (углами и сторонами) см. в статьях Сферическая геометрия, Сферическая тригонометрия.
Сферическая астрономия
Сферическая астрономия, раздел астрометрии, разрабатывающий математические методы решения задач, связанных с изучением видимого расположения и движения светил (звёзд, Солнца, Луны, планет, искусственных небесных тел и др.) на небесной сфере. Широко применяется в различных областях астрономии. С. а. возникла в глубокой древности и явилась первым шагом на пути изучения астрономических явлений.
Основным понятием С. а. является небесная сфера. Каждое направление на небесное светило в пространстве изображается на сфере точкой, а плоскость — большим кругом. Применение небесной сферы позволяет значительно упростить математические соотношения между направлениями на небесные светила, сводя сложные пространственные представления к более простым фигурам на поверхности сферы; с этим связано и само название "С. а.".
Для изучения взаиморасположения и движения точек по небесной сфере на ней устанавливают системы координат. В С. а. употребляются горизонтальная, две экваториальные и эклиптическая системы координат (см. Небесные координаты). Установление связи между различными системами координат производится с помощью формул сферической тригонометрии. Поскольку С. а. изучает явления, связанные с видимым суточным вращением небесного свода (то есть видимые движения светил, обусловленные вращением Земли), небесной сфере придают вращение вокруг оси мира с В. на З. с угловой скоростью, равной скорости вращения Земли. Такая кинематическая модель почти точно воспроизводит картину, которая наблюдается на небе с вращающейся Земли. Общие соотношения между горизонтальными и экваториальными координатами дают возможность определить время и азимут восхода и захода небесных светил, моменты их кульминации, элонгации, положение светил в заданные моменты времени и др. Одной из задач С. а. является определение условий, при которых две соответствующим образом выбранные звезды находятся на одинаковой высоте. Эта задача имеет значение для определения географических координат точек земной поверхности из астрономических наблюдений.
Измерение времени. Одной из важных задач С. а. является установление теоретических основ астрономической системы счёта времени. В С. а. рассматриваются единицы времени и связь между ними. В основу измерения времени положены естественные периодические явления — вращение Земли вокруг своей оси и обращение Земли вокруг Солнца. Вращение определяет, в зависимости от выбранной на небесной сфере основной точки (точка весеннего равноденствия, Солнце), звёздные или солнечные сутки. При отсчёте звёздных суток принимают во внимание, что точка весеннего равноденствия вследствие прецессии и нутации не сохраняет постоянного положения на небесной сфере, а перемещается поступательно, совершая одновременно колебания относительно среднего положения. Для счёта солнечных суток вводят понятие среднего Солнца — фиктивной точки, равномерно движущейся по экватору согласованно со сложным видимым движением истинного Солнца по эклиптике. Обращение Земли вокруг Солнца определяет тропический год, величина которого, соответствующая периоду смены времён года, лежит в основе календаря. Так как тропический год не содержит целого числа средних суток, то изменением величины календарного года (365 или 366 дней) добиваются того, чтобы его средняя продолжительность за большой промежуток времени равнялась бы продолжительности тропического года. В астрономии счёт времени ведётся непосредственно в тропических годах, в календарных годах со средней продолжительностью 365, 25 суток или последовательным счётом дней (так называемый юлианский период).
Координаты небесных светил, получаемые непосредственно из наблюдений, искажены в результате действия ряда факторов. Прежде всего сами координатные оси, связанные с осью вращения Земли и направленные на точку весеннего равноденствия, не сохраняют постоянного направления, а вращаются вследствие прецессии и нутации. Из-за аберрации небесные светила видны на небесной сфере несколько смещенными с тех мест, где они были бы в случае неподвижности Земли. Результаты наблюдений искажаются также вследствие рефракции; необходимо учитывать при обработке наблюдений и влияние параллакса. Для освобождения наблюдаемых мест небесных светил от перечисленных искажений и определения их в одной для всех наблюдений системе координат (в качестве такой системы выбирают координатную систему, связанную с положением оси вращения Земли, и точки весеннего равноденствия в некоторый фиксированный момент, например 1900.0 или 1950.0; см. Среднее место звезды) возникает необходимость в редукциях (введении поправок) координат светил, учитывающих влияние прецессии, нутации, аберрации, параллакса и рефракции. Специальные "редукционные величины" для учёта влияния прецессии, нутации и аберрации, а также другие величины, необходимые для обработки астрономических наблюдений, публикуются в астрономических ежегодниках.
Прецессия и нутация. Вследствие прецессии ось Земли медленно (с периодом около 26 000 лет) изменяет своё направление, описывая поверхность конуса. На это движение земной оси накладываются нутационные колебания (см. Нутация). Весьма медленно изменяет своё положение в пространстве также и плоскость эклиптики, с чем связано перемещение точки весеннего равноденствия, служащей начальной точкой отсчёта в ряде систем небесных координат. В результате изменяются координаты светил в экваториальной и эклиптической системах небесных координат.
Аберрация. Видимые положения звёзд на небесной сфере отличаются от их истинных положений вследствие аберрации света, происходящей в результате того, что наблюдатель и небесное светило движутся друг относительно друга. Так, при наблюдениях звёзд принимается в расчёт движение наблюдателя вследствие обращения Земли вокруг Солнца (годичная аберрация) и вследствие её вращения (суточная аберрация). При наблюдениях искусственных спутников Земли вычисляют также аберрацию, обусловленную движением спутника вокруг Земли.
Параллакс. Поскольку наблюдатель перемещается в пространстве из-за вращения Земли и обращения её вокруг Солнца, меняются и направления на небесные светила. Для получения сравнимых величин результаты наблюдений приводятся в первом случае (при наблюдении тел Солнечной системы) к центру Земли, а во втором случае (при наблюдении звёзд) — к центру Солнечной системы, то есть к Солнцу. Величина параллактического смещения зависит от расстояния до небесного светила.
Рефракция. Вследствие преломления света небесных светил в земной атмосфере светила кажутся смещенными в направлении зенита. Величина смещения зависит от показателя преломления воздуха (от температуры, давления и др.) и зенитного расстояния светила. При наблюдениях близких небесных светил (особенно для искусственных спутников Земли) принимают во внимание также смещения вследствие рефракционного параллакса, обусловленные неодинаковым влиянием рефракции на небесные светила, находящиеся в одном направлении от земного наблюдателя, но на разных расстояниях от него.
Результаты наблюдений небесных светил могут быть использованы для практических целей — определения географических координат, азимутов и времени, а также для теоретических исследований и других целей — лишь после освобождения их от влияния всех перечисленных искажающих факторов. Для вычисления соответствующих редукций пользуются так называемыми астрономическими постоянными, то есть численными характеристиками описанных явлений. Определение астрономических постоянных из данных астрономических наблюдений является задачей, связывающей С. а. с фундаментальной астрометрией и небесной механикой, а также с изучением строения Земли. С. а. имеет широкое и непосредственное применение в практической астрономии. В предмет С. а. также входят вопросы, связанные с определением координат на поверхности тел Солнечной системы, в частности на поверхности Луны, требующие учёта либрации Луны. Последняя проблема стала особенно актуальной с началом эры межпланетных перелётов и высадкой космонавтов на Луну. Кроме того, в С. а. изучаются способы вычисления солнечных и лунных затмений, а также других аналогичных явлений (покрытий звёзд Луной, прохождений планет по диску Солнца и т. п.).
Лит.: Блажко С. Н., Курс сферической астрономии, 2 изд., М., 1954; Редукционные вычисления в астрономии, в кн.: Астрономический ежегодник СССР на 1941 г., М.— Л., 1940 (Приложение, с. 379—432); Казаков С. А., Курс сферической астрономии, 2 изд., М.—Л., 1940; Куликов К. А., Курс сферической астрономии, М., 1969; Загребин Д. В., Введение в астрометрию, М.— Л., 1966; Newcomb S., A compendium of spherical astronomy..., N. Y.— L., 1906; Chauvenet W., A manual of spherical and practical astronomy..., 5 ed., v. 1, Phil., 1891.