Спиновые волны

Спиновые волны,

1) в магнитоупорядоченных средах (магнетиках) волны нарушений "спинового порядка". В ферромагнетиках, антиферромагнетиках и ферритах спины атомов и связанные с ними магнитные моменты в основном состоянии строго упорядочены. Из-за сильного обменного взаимодействия между атомами отклонение магнитного момента какого-либо атома от положения равновесия не локализуется, а в виде волны распространяется в среде. С. в. являются элементарным (простейшим) движением магнитных моментов в магнетиках. Существование С. в. было предсказано Ф. Блохом в 1930.

С. в., как всякая волна, характеризуется зависимостью частоты w от волнового вектора k (законом дисперсии). В сложных магнетиках (кристаллах с несколькими магнитными подрешётками) могут существовать несколько типов С. в.; их закон дисперсии существенно зависит от магнитной структуры тела.

С. в. допускают наглядную классическую интерпретацию: рассмотрим цепочку из N атомов, расстояния между которыми а, в магнитном поле Н (см. рис.). Если волновой вектор С. в. k = 0, это означает, что все спины синфазно прецессируют вокруг направления поля Н. Частота этой однородной прецессии равна ларморовой частоте w0. При k ¹ 0 спины совершают неоднородную прецессию: прецессии отдельных спинов (1, 2, 3 и т. д.) не находятся в одной фазе, сдвиг фаз между соседними атомами равен ka (см. рис.). Частота w (k) неоднородной прецессии больше частоты однородной прецессии w0. Зная силы взаимодействия между спинами, можно рассчитать зависимость w(k).

В ферромагнетиках для длинных С. в. (ka << 1) эта зависимость проста:

; (1)

величина порядка величины обменного интеграла между соседними атомами. Как правило, wе >> w0. Частота однородной прецессии w0 определяется анизотропией кристалла и приложенным к нему магнитным полем Н: , где gмагнитомеханическое отношение, b — константа анизотропии, М — намагниченность при Т = 0 К. Квантовомеханическое рассмотрение системы взаимодействующих спинов позволяет вычислить законы дисперсии С. в. для различных кристаллических решёток при произвольном соотношении между длиной С. в. и постоянной кристаллической решётки.

С. в. ставят в соответствие квазичастицу, называемую магноном. При Т = 0 К в магнетиках нет магнонов, с ростом температуры они появляются и число магнонов растет — в ферромагнетиках приблизительно пропорционально T3/2, а в антиферромагнетиках "T3. Рост числа магнонов приводит к уменьшению магнитного порядка. Так, благодаря возрастанию числа С. в. с ростом температуры уменьшается намагниченность ферромагнетика, причём изменение намагниченности (закон Блоха).

С. в. проявляют себя в тепловых, высокочастотных и др. свойствах магнетиков. При неупругом рассеянии нейтронов магнетиками в последних возбуждаются С. в. Рассеяние нейтронов — один из наиболее результативных методов экспериментального определения законов дисперсии С. в. (см. Нейтронография).

2) С. в. в немагнитных металлах — колебания спиновой плотности электронов проводимости, обусловленные обменным взаимодействием между ними. Существование С. в. в немагнитных металлах проявляется в некоторых особенностях электронного парамагнитного резонанса (ЭПР), в частности в селективной прозрачности металлических пластин для электромагнитных волн с частотами, близкими к частоте ЭПР.

Лит.: Ахиезер А. И., Барьяхтар В. Г., Пелетминский С. В., Спиновые волны, М., 1967.

М. И. Каганов.